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Abstract. We consider a dynamic reinsurance market, where the traded risk pro-
cess is driven by a compound Poisson process and where claim amounts are un-
bounded. These markets are known to be incomplete, and there are typically in-
finitely many martingale measures. In this case, no-arbitrage pricing theory can
typically only provide wide bounds on prices of reinsurance claims. Optimal mar-
tingale measures such as the minimal martingale measure and the minimal entropy
martingale measure are determined, and some comparison results for prices under
different martingale measures are provided. This leads to a simple stochastic order-
ing result for the optimal martingale measures. Moreover, these optimal martingale
measures are compared with other martingale measures that have been suggested
in the literature on dynamic reinsurance markets.
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1 Introduction

Dynamic reinsurance markets have been studied in a continuous time framework
using no-arbitrage conditions by Sondermann (1991) and Delbaen and Haezen-
donck (1989), among others. The main idea is to allow for dynamic rebalancing
of proportional reinsurance covers, which is obtained by assuming that some pro-
cess related to an insurance risk process, defined as accumulated premiums minus
claims of some insurance business, is tradeable and that positions can be rebalanced
continuously. This implies that reinsurers can change dynamically the amount of
insurance business that they have accepted. In this way, the insurance risk process
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is viewed as a traded security, and this imposes no-arbitrage bounds on premiums
for other reinsurance contracts such as stop-loss contracts.

This paper studies the situation where the traded index X , which is defined
as claims less premiums on some insurance portfolio, is driven by a compound
Poisson process. Thus, −X is the so-called insurance risk process. This leads to
an incomplete market with two traded assets, a savings account and the price pro-
cess X . On the other hand, if the underlying insurance claims are described by an
absolutely continuous distribution, there are essentially infinitely many sources of
risk. As a consequence of this incompleteness, contingent claims (reinsurance con-
tracts) cannot be priced uniquely by using no-arbitrage theory alone. In particular,
there will be infinitely many martingale measures for X . For most contracts, dif-
ferent measures will lead to different prices, and it is not clear which measure one
should apply. In this setting, we determine two optimal martingale measures known
from the literature on incomplete financial markets, the minimal martingale mea-
sure and the minimal entropy martingale measure. These are candidate measures
that can be used for pricing or valuation, see e.g., Schweizer (2001) and Grandits
and Rheinländer (2002). The main result of the present paper is a criterion for the
ordering of prices under two given martingale measures, which shows that these
two optimal martingale measures are ordered in the so-called convex order. We
show that for any convex function Φ, the price of the contract with payoff Φ(XT )
is smaller under the minimal martingale measure than under the minimal entropy
martingale measure. For example, this is relevant for a stop-loss reinsurance con-
tract Φ(XT ) = (XT − K)+, which covers claims above some level (the sum of
the premiums and the level K). This shows that the minimal entropy martingale
measure in our model can be viewed as a more conservative attitude to risk than
the minimal martingale measure.

The paper is organized as follows. Sect. 2 contains a review of existing re-
sults on dynamic reinsurance markets, and Sect. 3 introduces the basic model for
the traded price process. Sect. 4 lists martingale measures suggested by Delbaen
and Haezendonck (1989) and the minimal martingale measure and the minimal en-
tropy martingale measure. The latter two are compared in Sect. 5. In Sect. 6, we give
an ordering result for martingale measures and a comparison of the various mar-
tingale measures. Numerical results are presented for the case with exponentially
distributed claims. TheAppendix contains an extension to the time-inhomogeneous
case, which also allows for a term driven by a Brownian motion. The results are
related to a recent comparison result obtained by Henderson and Hobson (2003)
within exponential jump-diffusion models.

2 Existing literature on dynamic reinsurance markets

We briefly review the results of Sondermann (1991) and Delbaen and Haezendonck
(1989); see also Embrechts (2000) and Møller (2002). Let Ut be the accumulated
claims during [0, t] from some insurance business and let p̃ = (p̃t)0≤t≤T be a
predictable process related to the premiums on this business. We assume that the
interest rate on the market is constant and equal to 0. Define the (discounted) traded
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process by X = U − p̃ and consider a savings account with (discounted) price
process X◦ = 1.

Sondermann (1991) takes p̃t to be the premiums paid during [0, t]. In this case,
Xt corresponds to the value at time t of an account where claims are added and
premiums subtracted as they incur. Reinsurers can now participate in the risk by
trading the asset X . If premiums are paid continuously at a fixed rate κ, we get
p̃t = κt. In particular, a position of −ξ units during some interval (t, t + h) will
lead to the trading gains

−ξ(Xt+h −Xt) = ξκh− ξ(Ut+h − Ut). (2.1)

If ξ ∈ (0, 1), this means that the reinsurer receives a fraction ξ of the premi-
ums and covers a fraction ξ of the claims during (t, t + h). Thus, the gains (2.1)
correspond to the amount received by a reinsurer who has provided a so-called
proportional reinsurance cover for the underlying insurance portfolio. Sondermann
(1991) studied this model for a dynamic market for proportional reinsurance con-
tracts, and demonstrated that traditional reinsurance contracts such as stop-loss
contracts could be viewed as contingent claims, which should be priced so that no
arbitrage possibilities arise.

Delbaen and Haezendonck (1989) applied an alternative definition of the traded
process X and defined −p̃t as the premium at which the direct insurer can sell the
remaining risk UT − Ut on the reinsurance market, such that Xt would repre-
sent the insurer’s liabilities at time t. More precisely, Xt is equal to the claims Ut
incurred before time t, added a premium −p̃t for the remaining claims UT − Ut
during (t, T ]. If the direct insurer receives continuously paid premiums at the rate
κ and this rate coincides with the one charged by the reinsurers, we get −p̃t =
κ(T−t), which differs from Sondermann’s choice only by the constantκT . Delbaen
and Haezendonck (1989) considered a compound Poisson process U and studied
equivalent measures Q, where U is also a Q-compound Poisson process. They
then determined a predictable premium process −p̃ by requiring that X be a Q-
martingale. This approach, which guaranteed that no arbitrage possibilities could
arise from trading inX , was used to recover traditional actuarial valuation principles
by considering specific martingale measures.

In practice, reinsurance contracts are agreements between an insurer and a rein-
surer, and these contracts are typically not traded on stock exchanges. In addition,
these agreements are subject to credit risk, since reinsurance companies might de-
fault as a result of extreme losses. Thus, the current setting of a dynamic reinsurance
market, which moreover deals with one insurance portfolio only, should clearly be
viewed as an idealization.

3 Model and notation

We consider the discounted traded price process

Xt = X0 +
Nt∑
j=1

Yj − κt = X0 + Ut − κt, (3.1)
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where N is a homogeneous Poisson process with intensity λ, and where N is
independent of the sequence Y1, Y2, . . . of i.i.d. random variables with distribution
function G on (0,∞). The processes are defined on a probability space (Ω,F , P )
equipped with the natural filtration IF = (Ft)t∈[0,T ] associated with X; T is a
fixed finite time horizon. In Appendix 6.4, the framework is extended by allowing
for an inhomogeneous compound Poisson process and a term driven by a standard
Brownian motion.

Denote by µk the k’th moment (under the measure P ) of the claim-size distri-
bution G. We require that the premium rate is given by κ = (1 + ϑ)λµ1 > λµ1,
where ϑ > 0 is the strictly positive deterministic safety-loading parameter. We
assume that E[eηY1 ] < ∞ for η in some open interval containing 0, so that in
particular µk < ∞ for all k > 0.

Change of measure for compound Poisson processes
Consider measures Q defined by dQ

dP = ZT , with density process Zt = E[ZT |Ft]
given by

Zt = e−λtE[φ(Y1)]e
∑Nt

j=1 log(1+φ(Yj)), (3.2)

where φ is some deterministic function with φ(y) > −1, for all y > 0, and
E[φ(Y1)] < ∞. Delbaen and Haezendonck (1989) showed that the process Ut =∑Nt

j=1 Yj is a compound Poisson process under Q with parameters

λQ = λ(1 + E[φ(Y1)]) = (1 + φ̃)λ, (3.3)

GQ(dy) =
1 + φ(y)

1 + E[φ(Y1)]
G(dy) =

1 + φ(y)

1 + φ̃
G(dy) =

λ

λQ
(1 + φ(y))G(dy).(3.4)

For reasons of completeness, we show that this is indeed the case by simply cal-
culating the characteristic function of the increment Ut − Uτ given Fτ , for fixed
τ < t ≤ T . Recall that the characteristic function under P , given Fτ , of the
compound Poisson variable Ut − Uτ =

∑Nt

j=Nτ+1 Yj is

E
[
eis(Ut−Uτ )

∣∣∣Fτ] = eλ(t−τ)(E[eisY1 ]−1),

which involves λ and the characteristic function of the random variable Y1 with
distribution G. Under Q, the corresponding characteristic function is

EQ[eis(Ut−Uτ )
∣∣∣Fτ ]

= E

[
Zt
Zτ

eis(Ut−Uτ )
∣∣∣∣Fτ]

= E
[
e−λ(t−τ)E[φ(Y1)]e

∑Nt
j=Nτ +1 log(1+φ(Yj))e

is
∑Nt

j′=Nτ +1
Yj′
∣∣∣Fτ]

= e−λ(t−τ)E[φ(Y1)]E

Nt−Nτ∏
j=1

(
eisYj (1 + φ(Yj))

1 + E[φ(Y1)]
(1 + E[φ(Y1)])

)
= eλ(1+E[φ(Y1)])(t−τ)(EQ[eisY1 ]−1). (3.5)
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The first equality follows by using the definition of the measure Q and the abstract
Bayes formula, and the second equality follows by inserting the expression (3.2)
for the density process Z. In the third equality, we have used the fact that N has
independent and stationary increments under P and that Y1, Y2, . . . are i.i.d. and
independent ofN underP . In the last equality, which follows by using the properties
of N and Y1, Y2, . . . under P , we have moreover introduced the notation

EQ[eisY1 ] =
∫

(0,∞)
eisy

1 + φ(y)
1 + E[φ(Y1)]

G(dy) =
∫

(0,∞)
eisyGQ(dy),

where GQ is defined by (3.4). This shows that (3.5) is the characteristic function
of a compound Poisson variable with Poisson parameter λQ(t− τ) and claim size
distribution GQ. Thus, U is indeed a Q-compound Poisson process with parame-
ters (3.3) and (3.4). We let µQ = EQ[Y1] and note that the process Ut − λQµQt is
a Q-martingale.

4 Equivalent martingale measures

We can rewrite X as X = X0 +M +A, where M is a P -martingale given by

Mt =
Nt∑
j=1

Yj − λµ1t, (4.1)

and whereA is a deterministic process defined byAt = (λµ1−κ)t. It is well-known
that there can be many martingale measures for X , see Delbaen and Haezendonck
(1989). A martingale measure can, loosely speaking, be defined by changing the
intensity λ for the occurrence of claims, by changing the distribution G for the
claim sizes, or by combinations of these two methods. In the literature on incomplete
financial markets, one can find notions such as the minimal martingale measure and
the minimal entropy martingale measure. In this section, we list these martingale
measures for the process X . These results are well-known and can essentially be
compiled from various other papers on pricing of options on assets driven by jump-
diffusions; for related results on log-Lévy processes, see e.g., Chan (1999) and
Henderson and Hobson (2003).

Here we give conditions on φ for a measure Q with density process (3.2) to be
a martingale measure. Since Xt = X0 + (Ut − λQµQt) + (λQµQ − κ)t, we see
that X is a Q-martingale if κ = µQλQ. To relate this to φ, we rewrite this as

λ

∫
(0,∞)

y(1 + φ(y))G(dy) − (1 + ϑ)µ1λ = 0. (4.2)

We shall also refer to (4.2) as the martingale equation, and φ is called the kernel.
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4.1 Examples of martingale measures

We consider three examples of martingale measuresQβ , proposed by Delbaen and
Haezendonck (1989), with densities of the form

dQβ

dP
= C exp

NT∑
j=1

β(Yj)

 ,

which means that β(y) = log(1 + φ(y)) in the notation used above.
One example is to take β constant, β(y) = log(1+ζ), ζ > −1. In this case, the

martingale Eq. (4.2) is solved by ζ = ϑ. Thus, the Poisson intensity is changed to
(1+ϑ)λ, see (3.3), while the distribution (3.4) of the claims remains unchanged. We
refer to this measure as Q(1) and the parameters are (λ(1), G(1)) = ((1 + ϑ)λ,G).

Another example is β(y) = log(1 + b(y − µ1)), for some b > 0. In this case,
the martingale equation becomes

λ

∫
y(1 + b(y − µ1))G(dy) = λ(1 + ϑ)µ1,

which shows that this martingale measure Q(2) is determined by b = ϑµ1/(µ2 −
(µ1)2). Note that the conditionφ(y) > −1 for all y is only satisfied if ϑ(µ1)2

µ2−(µ1)2
< 1,

which means that the safety-loading ϑ should not be too big. Under this martingale
measure, the Poisson parameter is unchanged, i.e.λ(2) = λ, whereas the distribution

for the claim amounts is given by G(2)(dy) =
(
1 + ϑµ1

µ2−(µ1)2
(y − µ1)

)
G(dy).

A third example is β(y) = ρy − log(
∫
eρyG(dy)), for some ρ > 0. Here,

1 + φ(y) = eρy/
∫
eρyG(dy), which can be inserted in the martingale equation to

determine a martingale measure Q(3). Under this measure, the Poisson parameter
λ(3) is again unaffected by the change of measure and equal to λ, whereas the
distribution of the claim amounts changes to G(3)(dy) = (1 + φ(y))G(dy).

4.2 The minimal martingale measure

Define a martingale Ẑ via dẐt = −ẐtαdMt, with Ẑ0 = 1, where α = −ϑµ1/µ2
and where M is defined by (4.1). Since α < 0, it can be verified that

Ẑt = eαλµ1te
∑Nt

j=1 log(1−αYj), (4.3)

which is of the form (3.2) with φ(y) = −αy. Since E[ẐT ] = 1, we can define

an equivalent martingale measure P̂ via dP̂
dP = ẐT . The measure P̂ is known

as the minimal martingale measure, see Föllmer and Schweizer (1991), and it is
well-known that this measure is in general only a signed measure for discontinuous
processes; see also Schweizer (1995). However, in our model the assumption ϑ > 0
guarantees that α < 0, which implies that P̂ is indeed a true probability measure.

The dynamics of X under the minimal martingale measure can now be found
via the change of measure result recalled in Sect. 3 by comparing (4.3) and (3.2).
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Under the minimal martingale measure P̂ , the Poisson intensity is λ̂ = (1−αµ1)λ,
which exceeds the intensity λ under P , and the claim size distribution becomes
Ĝ(dy) := 1−αy

1−αµ1
G(dy). It follows that µ1 = E[Y1] ≤ EP̂ [Y1] = µ̂1. Thus, the

change of measure from P to the minimal martingale measure P̂ increases the
Poisson intensity as well as expected claim sizes. (To see that P̂ is a martingale
measure, check that the martingale equation is satisfied for φ(y) = −αy, where
α = −ϑµ1/µ2.)

4.3 The minimal entropy martingale measure

An equivalent martingale measure is called the minimal entropy martingale measure
if it minimizes the so-called relative entropy with respect to P . It follows e.g.,
from Grandits and Rheinländer (2002) that the density of the minimal entropy

martingale measure P is of the form dP
dP = C exp

(∫ T
0 ηs dXs

)
, for some constant

C and some integrable process η.
Consider a measure P

η
on the above form, where η is some constant. (For most

choices of η, P
η

will not be a martingale measure.) Using the simple expression
for X , we can rewrite the density as (here C is a constant which changes from
expression to expression):

dP
η

dP
= C exp

(∫ T

0
η d(Ms +As)

)

= C exp

(∫ T

0
η dMs

)
= C exp

NT∑
j=1

log eηYj

 . (4.4)

Thus, for each η, we have an equivalent measure P
η

with density (4.4) with respect
to P . Note that the structure of (4.4) is similar to (3.2), so that we can immediately
derive the P

η
-properties of the compound Poisson process U which drives X . Let

ψ(η) =
∫

(0,∞)
eηyG(dy) = E

[
eηY1

]
.

By comparing (3.2) and (4.4), we see that the parameters are λ = ψ(η)λ and
G(dy) = eηy

ψ(η)G(dy). The minimal entropy martingale measure is uniquely deter-
mined via the solution η to the martingale Eq. (4.2). By rewriting this equation for
η as

λ

∫
(0,∞)

y(eηy − 1)G(dy) − ϑλµ1 = 0, (4.5)

we see that η > 0, since ϑ > 0.

The case of gamma distributed claims
Assume as an example thatG is the gamma distribution with parameters (β, δ), i.e.
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that G(dy) = g(β,δ)(y)dy, where

g(β,δ)(dy) =
δβ

Γ (β)
yβ−1e−δy. (4.6)

Then, it follows that ∫
(0,∞)

yeηyG(dy) =
βδβ

(δ − η)β+1 ,

for η < δ. In particular, for β integer valued, solving (4.5) involves finding a real
root in a polynomial of order β + 1.

5 Comparisons of optimal martingale measures

A natural question is whether there is a systematic ordering of prices computed
under the two optimal martingale measures introduced above. This question has
recently been studied in a different context within an exponential jump-diffusion
model by Henderson and Hobson (2003), among others, who gave a simple cri-
terion for ordering of option prices under various martingale measures. Further
comparison results on option prices in markets driven by semimartingales have
been obtained by Gushchin and Mordecki (2002). For a comparison of our results
with the ones obtained by Henderson and Hobson (2003), see the Appendix.

Let Q and Q̃ be two martingale measures for X and let

XT = X0 + UT − λQµQ T = X0 + UT − λQ̃ µQ̃ T, (5.1)

where U is a compound Poisson process with parameters (λQ, GQ) and (λQ̃, GQ̃)
under Q and Q̃, respectively. The kernel for the minimal martingale measure
is φP̂ (y) = −αy, and for the minimal entropy martingale measure, φP (y) =
exp(ηy)− 1, where η solves the Eq. (4.5). The following result gives bounds on η:

Lemma 5.1 The parameter η in the kernel φP (y) = eηy − 1 is positive, and
η < −α.

Proof We can realize this by a straightforward examination of (4.5). By adding and
subtracting the term ηy, the integrand can be rewritten as eηy − 1 = ηy + f(η, y),
where f is defined by f(η, y) = eηy − (1 + ηy), which is strictly positive for
η > 0 and y > 0 (Taylor expansion of ex at 0). Thus, the integral appearing in (4.5)
becomes

λ

∫
(0,∞)

y(eηy − 1)G(dy) = ηλ

∫
(0,∞)

y2G(dy) + λ

∫
(0,∞)

yf(η, y)G(dy)

= ηλµ2 + λF (η),

where F (η) > 0. By inserting this in (4.5), we get that η (λµ2) + λF (η) = ϑλµ1,
which shows that

η < η +
λF (η)
σ2 + λµ2

=
ϑλµ1

σ2 + λµ2
= −α. ��
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We can show that λ̂ ≥ λ, i.e., the Poisson arrival intensity under the mini-
mal martingale measure exceeds the one for the minimal entropy martingale mea-
sure. Using the definition of λ, Taylor expansion for the exponential function and
Tonelli’s Theorem, we first rewrite the Poisson intensity under the minimal entropy
martingale measure as

λ = λ

∫
(0,∞)

eηyG(dy)

= λ

∫
(0,∞)

( ∞∑
m=0

(ηy)m

m!

)
G(dy) = λ

(
1 +

∞∑
m=1

ηm
µm
m!

)
. (5.2)

Here, η is found from the Eq. (4.5), which via similar calculations simplifies to

ϑµ1 =
∫

(0,∞)
y(eηy − 1)G(dy) =

∞∑
m=1

ηm
µm+1

m!
. (5.3)

Under the minimal martingale measure, the Poisson intensity is λ̂ = λ(1−αµ1) =
λ
(
1 + ϑ

µ2
1
µ2

)
. By inserting (5.3) in the expression for λ̂, we get

λ̂ = λ

(
1 +

µ1

µ2

∞∑
m=1

ηm
µm+1

m!

)
,

which can now be compared directly with (5.2). To see that λ̂ ≥ λ it only remains
to verify that µ1 µm+1 ≥ µm µ2, for m = 1, 2, . . . . This follows by using the
inequality E∗[Y m1 ] ≥ E∗[Y m−1

1 ]E∗[Y1] under the measure G∗(dy) = y
µ1
G(dy).

Since any martingale measure Q has the property κ = µQλQ, see Sect. 4, we have
that µ̂ λ̂ = µλ, which implies that µ̂1 ≤ µ1. Thus, the expected values in the claim
size distributions are ordered.

6 Stochastic orders and optimal martingale measures

6.1 Some results from the theory on stochastic orders

This section reviews standard results from the theory on stochastic orders that will
prove useful below; references are Müller and Stoyan (2002, Chapt. 1) and Shaked
and Shanthikumar (1994, Chapt. 2). For applications of stochastic orders in actuarial
science, see e.g., Goovaerts et al. (1984) and Kaas et al. (1994).

Consider two random variables Y and Z, with distribution functions FY and
FZ , respectively. The random variable Y is said to be stochastically smaller than
Z if FY (y) ≥ FZ(y) for all y. In this case we write Y �d Z or FY �d FZ ; note
than this is a condition on the distribution functions for Y and Z and that Y and
Z need not be defined on the same probability space. It is not difficult to see that
if Y and Z are non-negative and if Y �d Z, then E[Y r] ≤ E[Zr] for all r ≥ 0.
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The random variable Y is said to be smaller than Z in the increasing convex order
(written Y �c Z or FY �c FZ) if

E[(Y − x)+] =
∫ ∞

x

(y − x)FY (dy) ≤
∫ ∞

x

(y − x)FZ(dy) = E[(Z − x)+]

for all x. It follows by Jensen’s inequality that E[Y ] �c Y , i.e. Y is larger in the
increasing convex order than its expected value. It can be shown that Y �c Z if
and only if E[Φ(Y )] ≤ E[Φ(Z)] for all increasing convex functionsΦ. If, moreover,
E[Y ] = E[Z], then this inequality holds for all (not necessarily increasing) convex
functions. In this situation, we simply say that Y is smaller than Z in the convex
order.

LetΘ be another random variable and denote by FY,θ and FZ,θ the conditional
distributions of Y and Z given Θ = θ. If FY,θ �c FZ,θ for all θ, then FY �c

FZ . Thus, the (increasing) convex order is closed under mixture. If Y1, Y2, . . .
and Z1, Z2, . . . are sequences of independent random variables such that Yj �c

Zj for j = 1, 2, . . . then g(Y1, . . . , Ym) �c g(Z1, . . . , Zm) for any increasing,
component-wise convex function g : IRm �→ IR. In particular, this shows that
Y1 + . . .+ Ym �c Z1 + . . .+ Zm, so that the (increasing) convex order is closed
under convolution. If moreover each of the sequences (Yj)j∈IN and (Zj)j∈IN are
i.i.d. and if N and M are two integer-valued non-negative random variables with
M �c N which are independent of the sequences of Yj’s and Zj’s, then

M∑
j=1

Yj �c

N∑
j=1

Zj . (6.1)

This shows that the (increasing) convex order is closed under random summation.
For example, if M and N are Poisson variables with parameters λM and λN , then
M �c N if λM ≤ λN . A useful sufficient criterion for the (increasing) convex
ordering of two random variables Y and Z with distribution functions FY and FZ
is the so-called cut criterion: If E[Y ] ≤ E[Z] and if there exists some finite ξ such
that

FY (y) ≤ FZ(y) for all y < ξ, and FY (y) ≥ FZ(y) for all y > ξ,

then Y �c Z. If the distribution functions FY and FZ admit densities fZ and
fY with respect to some measure and have equal means, then the cut criterion is
satisfied if for example the function (fZ − fY ) has exactly two sign changes, with
sign sequence +, −, +.

6.2 Main results: Convex ordering for martingale measures

We give a sufficient criterion for the convex ordering of the distribution of XT for
two equivalent martingale measuresQ and Q̃with deterministic kernelsφQ andφQ̃,
respectively. SinceXT is determined by compound Poisson variables, we can apply
the results on convex orders reviewed in the previous section. The parameters are
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(λQ, GQ) and (λQ̃, GQ̃), and the means in the claim size distributions are µQ1 and

µQ̃1 . Finally, FQ and FQ̃ are the distribution functions of XT under Q and Q̃. Note

that for any martingale measuresQ and Q̃, we have that EQ[XT ] = EQ̃[XT ] = X0,
so that we do not need to distinguish between the increasing convex order and the
convex order when comparing the distribution of XT under different martingale
measures. Here is the main result:

Theorem 6.1 Consider equivalent martingale measures Q and Q̃ with determin-
istic kernels φQ and φQ̃ and parameters (λQ, GQ) and (λQ̃, GQ̃). Let v(y) =
φQ(y) − φQ̃(y), and assume that:

1. µQ1 ≥ µQ̃1 and λQ̃µQ̃1 = λQµQ1 .
2. There exist constants 0 ≤ y1 ≤ y2 < ∞, such that v(y) ≥ 0 for y ∈
(0, y1) ∪ (y2,∞) and v(y) ≤ 0 for y ∈ (y1, y2).

Then FQ̃ �c FQ, i.e. for any convex function Φ, EQ̃[Φ(XT )] ≤ EQ[Φ(XT )].

Remark 6.2 The first condition guarantees that the means of the claim size dis-
tributions under Q and Q̃ are ordered, and the second condition is needed in
order to ensure that we can apply the cut criterion on certain transformed den-
sities related to the two measures. Since Q and Q̃ are both martingale measures,

λQ̃µQ̃1 = λQµQ1 = (1 + ϑ)µ1λ = κ. ��
We postpone the proof of Theorem 6.1 to Sect. 6.4 below. Here, we formulate

and prove instead Proposition 6.3 by using this theorem. Denote by F̂ and F
the distribution functions of XT under the minimal martingale measure P̂ and
the minimal entropy martingale measure P , respectively. In addition, we use the
notation Ê and E for the expectations EP̂ and EP . The next result shows that

F̂ �c F , which implies that the minimal entropy martingale measure represents a
more conservative attitude to risk than the minimal martingale measure.

Proposition 6.3 For any convex function Φ, the price of Φ(XT ) under the minimal
martingale measure is smaller than the price of Φ(XT ) under the minimal entropy
martingale measure, i.e. Ê[Φ(XT )] ≤ E[Φ(XT )].

Proof First recall that the kernels for the minimal martingale measure P̂ and
the minimal entropy martingale measure P are indeed deterministic. Secondly,
we know from above that λ̂µ̂1 = λµ1, and that µ̂1 ≤ µ1. This establishes the
first condition of Theorem 6.1. For the measures (P , P̂ ), we have that v(y) =
eηy − (1 − αy) with η < −α. In this case, Condition 2 is clearly satisfied with
y1 = 0 and y2 given as the unique strictly positive solution to the equation v(y) = 0.
This completes the proof. ��

6.3 Optimal measures versus ad-hoc choices

In this section, we compare the measures determined by ad-hoc considerations in
Sect. 4.1 with the two optimal martingale measures, see Table 6.2. We end the
section by considering an example with exponentially distributed claims.



490 T. Møller

Table 1. Martingale measures and their parameters

Meas. Poisson int. Claim size distribution 1 + φ(y)

Q(1) (1 + ϑ)λ G(dy) 1 + ϑ

Q(2) λ (1 + ϑµ1
µ2−(µ1)2 (y − µ1))G(dy) 1 + ϑµ1

µ2−(µ1)2 (y − µ1)

Q(3) λ eρy/(
∫

eρy′
G(dy′))G(dy) eρy/(

∫
eρy′

G(dy′))

P̂ (1 + ϑ
µ2
1

µ2
)λ (1 + ϑµ1

µ2+ϑ(µ1)2 (y − µ1))G(dy) 1 + ϑµ1
µ2+ϑ(µ1)2 (y − µ1)

P λ
∫

eηy′
G(dy′) eηy/(

∫
eηy′

G(dy′))G(dy) eηy

Table 2. Probability measures and their parameters under expo-
nentially distributed claims

Measure Poisson intensity Claim size distr. (density)

P λ g(1,δ)
Q(1) (1 + ϑ)λ g(1,δ)
Q(2) λ (1 − ϑ)g(1,δ) + ϑg(2,δ)
Q(3) λ g(1,δ/(1+ϑ))

P̂ (1 + ϑ/2)λ 1
1+ϑ/2g(1,δ) + ϑ/2

1+ϑ/2g(2,δ)

P λ
√

1 + ϑ g(1, δ√
1+ϑ

)

Proposition 6.4 The martingale measures are ordered in the following way:

FQ(1) �c FP̂ �c FP �c FQ(3) . (6.2)

If ϑ(µ1)2/(µ2 − (µ1)2) < 1, then Q(2) is well-defined and FQ(1) �c FP̂ �c

FQ(2) �c FQ(3) .

Proof As mentioned in Remark 6.2, the means in the compound Poisson parts under
the various martingale measures coincide, such that the second part of Condition 1
in Theorem 6.1 will automatically be satisfied for any pair of martingale measures.
We first verify the three ordering relations in (6.2) by showing in each case that the
conditions of the theorem are satisfied:

FQ(1) �c FP̂ : Compare first the Poisson intensities under the two measures:

SinceλQ
(1)

= (1+ϑ)λ ≥ (1+ϑ (µ1)2

µ2
) = λ̂, we see thatµQ

(1)

1 ≤ µ̂1. This shows the
first part of Condition 1. To check the second condition, note that v(y) = |α|y−ϑ,
which clearly satisfies Condition 2.

FP̂ �c FP : This already follows from Proposition 6.3.
FP �c FQ(3) : The first condition of Theorem 6.1 is verified by noting that

λQ
(3)

= λ ≤ λ, and the second condition follows by noting that v(y) =
eρy/(

∫
eρy

′
G(dy′)) − eηy , where ρ > η. Thus, v(y) satisfies the second con-

dition of the theorem. This completes the proof of (6.2). The condition on ϑ for the
existence ofQ(3) follows from Sect. 4.1, and the ordering relations for the measures
Q(i), i = 1, 2, 3, and P̂ follow from calculations similar to the ones used for the
proof of (6.2). ��
The case of exponentially distributed claims
Consider the situation, where the claim size distribution G under P is exponential
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Fig. 1. Stop-loss premiums under exponential claims. The dot-dashed line (at the top) corresponds to the
measure Q(3), the solid line is the minimal entropy measure, the dashed line is the minimal martingale
measure, and the dotted line (bottom) corresponds to Q(1)

with parameter δ. Recall that g(β,δ) is the density for the gamma distribution with
parameters (β, δ), see (4.6). Thus, in the example G(dy) = g(1,δ)(y)dy, so that
µ1 = 1/δ and µ2 = 2/δ2. Using the various defining equations for the parameters
appearing in the martingale measures presented in Table 6.2, we can character-
ize the Poisson intensities and the claim size distributions under the martingale
measures in this example, see Table 2. This table shows that the claims are also
exponentially distributed under the measures Q(1), Q(3) and P , whereas the claim
size distributions underQ(2) and P̂ are mixtures of certain exponential and gamma
distributions with shape parameter 2. (Note in addition that the measure Q(2) is
only defined if ϑ < 1.)

We consider a numerical example, where we take λ = δ = T = 1 and ϑ = 0.5.
Stop-loss premiums for retentions between 0.5 (which corresponds to 1/3 of the
premium, since (1 + ϑ)µ1λ = 1.5) and 6 (4 times the premium) can be found in
Fig. 1. (All numbers have been computed via simulation; an alternative idea would
be to apply the so-called Panjer recursion, see Panjer 1981.) The figure illustrates the
results in Proposition 6.4, in that the premiums are ordered for any retention levels
such that indeed FQ(1) �c FP̂ �c FP �c FQ(3) . In particular, the figure confirms
that premiums computed under the minimal martingale measure are smaller than
the ones computed under the minimal entropy martingale measure. However, the
difference between the premiums under these two measures is relatively small. For
comparison, we have listed some of the premiums in Table 3, which also allows for
some comments on the relation between the measures Q(2) and P . For retention
levels below 22, the measureQ(2) leads to higher prices than P , which could seem
to indicate that FP �c FQ(2) in our example. However, for very high retention
levels (above 22), P seems to lead to the highest prices. This is partly explained by
the fact that µ1 ≤ µQ

(2)
, whereas the density of the claim size distribution for P is

above the corresponding density for Q(2) for sufficiently large values of y. Thus,
P and Q(2) are not ordered (in the convex order).
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Table 3. Stop-loss premiums under the various martingale measures in the case of exponentially dis-
tributed claims

Measure/
retention 6 10 14 18 20 22 24

Q(1) 0.039 0.0025 1.3·10−4 6.4·10−6 1.4·10−6 3.5·10−7 1.0·10−7

P̂ 0.056 0.0047 3.4·10−4 2.2·10−5 5.1·10−6 1.1·10−6 2.1·10−7

P 0.064 0.0063 5.5·10−4 4.4·10−5 1.2·10−5 3.5·10−6 9.6·10−7

Q(2) 0.073 0.0072 6.2·10−4 4.9·10−5 1.3·10−5 3.4·10−6 7.1·10−7

Q(3) 0.099 0.0140 1.8·10−3 2.3·10−4 8.1·10−5 2.7·10−5 9.4·10−6

6.4 Proof of Theorem 6.1

Assume for simplicity that T = 1. Consider two measuresQ and Q̃with decompo-
sitions (5.1). The term U1 is distributed as a standard compound Poisson variable
underQ and Q̃. SinceX is a martingale underQ and Q̃, the expected values of U1
under the two martingale measures coincide. Thus, it is sufficient to check that the
two compound Poisson distributions are ordered under the convex order. However,
according to Condition 1, λQ̃ ≥ λQ, so that we cannot use the results reviewed in
Sect. 6.1 directly; the problem is that the claim arrival Poisson intensity under Q̃
exceeds the Q-intensity, and we want to show that FQ̃ �c FQ.

In order to prepare for an application of the results on convex ordering, we
first apply standard results for compound Poisson variables. The distribution of the
compound Poisson variable underQ is identical to the distribution of another com-

pound Poisson variable
∑N ′

1
j=1 Y

′
j , whereN ′

1 ∼Poisson(λQ̃), and where Y ′
1 , Y

′
2 , . . .

are i.i.d., independent of N ′
1, with distribution G′ on [0,∞) = {0} ∪ (0,∞) given

by

G′(dy) =
λQ

λQ̃
GQ(dy) +

(
1 − λQ

λQ̃

)
ε0(dy)

=
λQ

λQ̃
λ

λQ
(1 + φQ(y))G(dy) +

(
1 − λQ

λQ̃

)
ε0(dy), (6.3)

where ε0(y) is the Dirac-measure at 0. For simplicity, one can take (here and in the
following) all random variables equipped with a prime ′ to be defined on a separate
probability space (Ω′,F ′, P ′). Thus, we have increased the Q-Poisson intensity

from λQ to λQ̃ by the factor λQ̃

λQ ≥ 1 and replaced the claim size distribution GQ

by G′, which is a mixture of the original Q-claim size distribution and the Dirac
measure at 0, without affecting the distribution of the compound variable. (To see
this, simply compute the characteristic functions of the two compound Poisson
variables, and check that they are identical.) Thus, if we can show that GQ̃ �c G

′,
then the assertion follows by using a result similar to (6.1). To see that GQ̃ �c G

′,
we now apply the cut criterion to G′, defined by (6.3), and to GQ̃ defined by
GQ̃(dy) = λ

λQ̃
(1 + φQ̃(y))G(dy). First note that the mean µ′

1 in the distribution

G′ is identical to the mean µQ̃1 in the distribution GQ̃, since the mean of the two
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compound Poisson variables coincide in the pure jump case. Denote by g′ and gQ̃

the densities for the distributions G′ and GQ̃ with respect to the convolution of G
and the Dirac measure at 0. Then the difference between the two densities is

g′(y) − gQ̃(y)=
(

1 − λQ

λQ̃

)
1{y=0}+

λ

λQ̃

(
(1 + φQ(y)) − (1 + φQ̃(y))

)
1{y �=0}.

Condition 2 of the above theorem guarantees the existence of 0 ≤ y1 ≤ y2 < ∞
such that sign(g′(y) − gQ̃(y)) = +, for y ∈ [0, y1) ∪ (y2,∞), and sign(g′(y) −
gQ̃(y)) = −, for y ∈ (y1, y2). Thus, according to the sufficient condition for the

cut criterion, GQ̃ �c G
′, so that (6.1) gives that FQ̃ �c FQ as claimed. In the case

λQ = λQ̃, no adjustment of the Poisson intensities is needed and the cut criterion
follows by examining the original distribution functions GQ and GQ̃ directly. ��

Appendix: Extended framework

In this appendix we extend the results to the case of an inhomogeneous compound
Poisson process and allow for a term driven by a Brownian motion. More precisely,
we let

dXt =
∫

(0,∞)
y(γ(dt, dy) − λtGt(dy) dt) + σt dWt + (λt µ1,t − κt) dt, (A.1)

where X0 = x0 and where γ(dt, dy) is an integer valued random Poisson measure
γ(dt, dy) (i.e. a marked point process) with compensator ν(dt, dy) = Gt(dy)λt dt.
All processes are defined on a filtered probability space (Ω,F , IF, P ), and we fix
a finite time horizon T . We let IF be the P -augmentation of the natural filtration
of X , we take FT = F and assume that F0 is trivial. The parameters λt, σt and
κt are assumed to be deterministic functions of time t, and Gt(·) is a distribution
function on (0,∞), which only depends on t. Thus,X has independent increments.
The notation is now extended to allow for this dependence on time. For example,
we denote by µk,t the k’th moment (under P ) of claims occurring at t, and assume
that κt = (1 + ϑt)λt µ1,t > λt µ1,t, where ϑt > 0. Finally, we assume that the
distributions Gt have finite exponential moments, so that in particular µk,t < ∞
for all k > 0. The process X can be written as X = X0 +M + A, where M is a
martingale, and where A is deterministic and of finite variation with

dMt =
∫

(0,∞)
y(γ(dt, dy) − λtGt(dy) dt) + σt dWt,

dAt = (λt µ1,t − κt) dt = −ϑt λt µ1,t dt.

The predictable quadratic variation process ofM is d〈M〉t = (µ2,tλt+σ2
t )dt, and

we note that dAt = αt d〈M〉t, with αt = − ϑt λt µ1,t

λt µ2,t+σ2
t

.

Girsanov’s Theorem

We recall Girsanov’s Theorem for our situation, which is covered by Theorem
III.3.24 of Jacod and Shiryaev (1987); see also Chan (1999). Consider a probability
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measure Q, with density process Zt = E
[
dQ
dP

∣∣∣Ft], where Z is a P -martingale,

Z0 = 1, and

dZt = Zt−

(
ψtdWt +

∫
(0,∞)

φt(y)(γ(dt, dy) − ν(dt, dy))

)
,

with φt(y) > −1 for predictable processes ψ and φ. Girsanov’s Theorem states
that WQ defined by dWQ

t = dWt − ψtdt is a Q-standard Brownian motion and
that γ(dt, dy) − νQ(dt, dy) is a Q-martingale increment, where νQ(dt, dy) =
(1 + φt(y))ν(dt, dy). We get

dXt = σtdW
Q
t + ψtσtdt+

∫
(0,∞)

y(γ(dt, dy) − νQ(dt, dy))

+
∫

(0,∞)
yνQ(dt, dy) − (1 + ϑt)µ1,tλtdt,

so that X is a (local) Q-martingale provided that (ψ, φ) satisfies the martingale
equation

ψtσt + λt

∫
(0,∞)

y(1 + φt(y))Gt(dy) − (1 + ϑt)µ1,tλt = 0, (A.2)

for all t. If φt(y) is deterministic, i.e. a function of (t, y) only, we rewrite the
Q-compensator as νQ(dt, dy) = λQt dtG

Q
t (dy), where λQt = (1 + φ̃t)λt, with

φ̃t =
∫
(0,∞) φt(y)Gt(dy), and

GQt (dy) =
1 + φt(y)

1 + φ̃t
Gt(dy) =

λt

λQt
(1 + φt(y))Gt(dy). (A.3)

In order for the process X to have independent increments under Q, it is neces-
sary that the kernel φ is deterministic, see e.g., Jacod and Shiryaev (1987, Theo-
rem II.4.15). We finally note that dQdP = ZT and that the density process Z may be
written as

Zt = exp
(∫ t

0
ψsdWs−1

2

∫ t

0
ψ2
sds

)
exp

(∫ t

0

∫
(0,∞)

log(1 + φs(y))γ(dt, dy)

)

exp

(
−
∫ t

0

∫
(0,∞)

φs(y)ν(ds, dy)

)
.

The minimal martingale measure
Define a local martingale Ẑ via dẐt = −Ẑt αt dMt and Ẑ0 = 1. The minimal
martingale measure P̂ is defined by dP̂

dP = ẐT , if ẐT is strictly positive and E[ẐT ] =
1. Since αt < 0,

Ẑt = exp
(

−
∫ t

0
αs σsdWs − 1

2

∫ t

0
α2
s σ

2
s ds

)
exp

(∫ t

0
αs λs µ1,s ds

)
exp

(∫ t

0

∫
(0,∞)

log(1 − αs y)γ(ds, dy)

)
.(A.4)
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By Girsanov’s Theorem, the P̂ -compensator of γ(ds, dy) is

ν̂(dt, dy) = (1 − αt y)ν(dt, dy) =
1 − αt y

1 − αt µ1,t
Gt(dy)(1 − αt µ1,t)λt dt.(A.5)

Under P̂ , λ̂t := (1 − αt µ1,t)λt, and Ĝt(dy) := 1−αt y
1−αt µ1,t

Gt(dy).

The minimal entropy martingale measure

The minimal entropy martingale measure is of the form dP
dP = C exp

(∫ T
0 ηs dXs

)
,

for a constant C and some integrable process η. For a deterministic process η, this
means that

dP
η

dP
= CE

(∫
ησdW

)
T

exp

(∫ T

0

∫
(0,∞)

log eηtyγ(dt, dy)

)
. (A.6)

We see that the P
η
-compensator of γ(dt, dy) is ν(dt, dy) = eηtyν(dt, dy) =

Gt(dy)λtdt, where Gt(dy) = eηty

ψt(ηt)
Gt(dy), and λt = ψt(ηt)λt, and where

ψt(ηt) =
∫
(0,∞) e

ηtyGt(dy). This leads to the martingale equation

ηtσ
2
t + λt

∫
(0,∞)

yeηtyGt(dy) − (1 + ϑt)λtµ1,t = 0. (A.7)

Comparisons of optimal martingale measures
Let Q be some martingale measure for X and let

XT=X0+
∫ T

0

∫
(0,∞)

y(γ(dt, dy)−(1+φQt (y))ν(dt, dy))+
∫ T

0
σt dW

Q
t , (A.8)

whereWQ is a standard Brownian motion underQ, and where (1+φQt (y))ν(dt, dy)
is the Q-compensator of γ(dt, dy). According to (A.5), φP̂t (y) = −αty for
the minimal martingale measure. For the minimal entropy martingale measure,
φPt (y) = exp(ηty) − 1, where ηt solves the Eq. (A.7). Consider now another
martingale measure Q̃ and the corresponding decomposition. The following re-
sult is taken from Theorem 6.1 of Henderson and Hobson (2003), who prove this
within an exponential jump-diffusion model via coupling and Jensen’s inequality
for conditional expectations.

Proposition A.1 (Henderson and Hobson 2003) LetH = Φ(XT ) for some convex

function Φ and consider martingale measures (Q, Q̃) with (φQ, φQ̃) deterministic.

If φQt (y) ≥ φQ̃t (y) for all (t, y), then EQ[Φ(XT )] ≥ EQ̃[Φ(XT )].

In our model, the kernels for the minimal martingale measure and the minimal
entropy martingale measures do not admit the uniform ordering needed in the
proposition. To see this, first note that 0 < ηt < −αt. (This can be shown as in
the homogeneous case.) Let vt(y) = eηty − 1 + αty = φPt (y) − φP̂t (y), which
is the difference between the kernels under the two optimal martingale measures.
It follows that vt(y) is strictly positive for y sufficiently big, whereas vt(0) = 0
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and v′
t(0) = ηt + αt < 0. Thus, vt(y) is negative for small y, which shows that

φPt (y) < φP̂t (y) for y small andφPt (y) > φP̂t (y) for y sufficiently big. In particular,
we cannot apply Proposition A.1 for the two optimal measures.

Ordering of expected values in random Poisson parts
By comparing the martingale equations for P̂ and P , we get that

−αtσ2
t + λt

∫
(0,∞)

y(1 − αty)Gt(dy) = ηtσ
2
t + λt

∫
(0,∞)

yeηtyGt(dy),

which implies that

λ̂tµ̂1,t = λt

∫
(0,∞)

y(1 − αty)Gt(dy) = (ηt + αt)σ2
t + λt

∫
(0,∞)

yeηtyGt(dy)

≤ λt

∫
(0,∞)

yeηtyGt(dy) = λtµ1,t.

Thus, the expected value under the minimal entropy martingale measure of the
random Poisson part exceeds the expected value under the minimal martingale
measure.

Ordering of expected values in claim size distributions
In the current model we cannot conclude that λ̂t ≥ λt via calculations similar to
the ones used in the homogeneous pure jump case. However, similar arguments
show that

µ̂1,t =
∫
y(1 − αty)Gt(dy)∫
(1 − αty)Gt(dy)

≤
∫
yeηtyGt(dy)∫
eηtyGt(dy)

= µ1,t. (A.9)

The inequality in (A.9) can be established by using Taylor expansions of the ex-
ponential functions appearing on the right of the inequality. Thus, it is sufficient to
show that

(µ1,t − αtµ2,t)
∞∑
m=0

µm,t
ηmt
m!

≤ (1 − αtµ1,t)
∞∑
m=0

µm+1,t
ηmt
m!

.

Stochastic orders and optimal martingale measures
The extension of Theorem 6.1, which can be used to show that Ê[Φ(XT )] ≤
E[Φ(XT )] for any convex function Φ, now takes the form:

Theorem A.2 Consider two equivalent martingale measures Q and Q̃ with deter-

ministic kernels (ψQt , φ
Q
t ) and (ψQ̃t , φ

Q̃
t ) and parameters (λQt , G

Q
t ) and (λQ̃t , G

Q̃
t ).

Let

v∗
t (y) = λQ̃t µ

Q̃
1,t(1 + φQt (y)) − λQt µ

Q
1,t(1 + φQ̃t (y)). (A.10)

Assume that for all t ∈ [0, T ]:

1. µQ1,t ≥ µQ̃1,t and λQt µ
Q
1,t ≥ λQ̃t µ

Q̃
1,t.

2. There exist constants 0 ≤ y1
t ≤ y2

t < ∞, such that v∗
t (y) ≥ 0 for y ∈ (0, y1

t ) ∪
(y2
t ,∞) and v∗

t (y) ≤ 0 for y ∈ (y1
t , y

2
t ).

Then FQ̃ �c FQ, i.e. for any convex function Φ, EQ̃[Φ(XT )] ≤ EQ[Φ(XT )].
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Proof As in the homogeneous case, the result is proved by examining the represen-
tation formulas for XT under the two measures. However, in the present situation,
where parameters are time-dependent, we cannot immediately apply the results on
the closedness of the convex order under random summation. We therefore use
a result of Norberg (1993) which identifies the jump part

∫ T
0

∫
yγ(dt, dy) with

a standard compound Poisson variable. Consider first the jump part under Q̃. By
Theorem 1 and Corollary 1 of Norberg (1993),∫ T

0

∫
(0,∞)

yγ(dt, dy) D=
Ñ ′

T∑
j=1

Ỹ ′
j , (A.11)

where the standard compound Poisson variable has parameters Λ̃T =
∫ T
0 λQ̃t dt and

G̃∗(dy) =

∫ T
0 λQ̃t G

Q̃
t (dy)dt∫ T

0 λQ̃t dt
. (A.12)

The result says that, when considering the total claim amount during [0, T ], we can
equivalently view claims as taken from the same distribution G̃∗. More precisely,

G̃∗ is a mixture of the distributions {GQ̃θ |θ ∈ [0, T ]} with a mixing distribution,

which has density h(θ) = λQ̃θ /Λ̃T on [0, T ]. The proof consists in deriving a similar
characterization of the jump part under Q and using the closedness of the convex
order under mixtures.

We now turn to the distribution of the jump part under Q. Since the expected
values of the jump parts under the two measures might differ, see Condition 1,
we first decompose the Q-jump part into two (inhomogeneous) Poisson random

measures. Let λ′
t = (λQ̃t µ

Q̃
1,t)/µ

Q
1,t and λ′′

t = λQt − λ′
t. The second part of Con-

dition 1 ensures that λ′
t ≤ λQt , such that λ′′

t ≥ 0, and the first part shows that

λ′
t ≤ λQ̃t . Let γ′ and γ′′ be independent random Poisson measures with com-

pensators ν′(dt, dy) = λ′
tG

Q
t (dy)dt and ν′′(dt, dy) = λ′′

tG
Q
t (dy)dt, respectively.

Then it follows that under Q:∫ T

0

∫
(0,∞)

y(γ − νQ) D=
∫ T

0

∫
(0,∞)

y(γ′ − ν′) +
∫ T

0

∫
(0,∞)

y(γ′′ − ν′′).

The compensated jump parts have mean zero. In particular, Jensen’s inequality
implies that the last term is larger in the convex order than 0 (its mean); conse-
quently, this term can be ignored. We derive an ordering result for the first jump
part and (A.11). Since∫ T

0

∫
(0,∞)

yν′(dt, dy) = λ′
tµ
Q
1,t = λQ̃t µ

Q̃
1,t =

∫ T

0

∫
(0,∞)

yνQ̃(dt, dy),

for all t, we can focus on the jumps only. Next, we identify γ′ with another random
Poisson measure γ′′′ with compensator

ν′′′(dt, dy) = λQ̃t dt

(
λ′
t

λQ̃t

GQt (dy) +

(
1 − λ′

t

λQ̃t

)
ε0(dy)

)
=: λQ̃t dtG

′′′
t (dy).
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Thus, we can increase the intensity of claims from λ′
t to λQ̃t and replace the distri-

butionGQt by a mixture of this distribution and the Dirac measure at 0. This change
does not affect the distribution of the total claim amount, so that∫ T

0

∫
(0,∞)

yγ′(dt, dy) D=
∫ T

0

∫
(0,∞)

yγ′′′(dt, dy) D=
N ′

T∑
j=1

Y ′
j , (A.13)

where the last term is a standard compound Poisson variable with parameters Λ̃T
and

G∗(dy) =

∫ T
0 λQ̃t G

′′′
t (dy)dt∫ T

0 λQ̃t dt
.

The second equality in distribution in (A.13) follows from Norberg (1993). Condi-
tion 2 of the theorem ensures that the sufficient condition for the cut criterion can be
applied on GQ̃t and G′′′

t . To see this, note that the difference between the densities

for G′′′
t and GQ̃t with respect to the convolution of G and the Dirac measure at 0 is

g′′′
t (y) − gQ̃t (y) =

λ′
t

λQ̃t

λt

λQt
(1 + φQt (y)) − λt

λQ̃t

(1 + φQ̃t (y))

=
λt

λQ̃t λ
Q
t µ

Q
t

(
λQ̃t µ

Q̃
1,t(1 + φQt (y)) − λQt µ

Q
1,t(1 + φQ̃t (y))

)
,

for y ∈ (0,∞), where we have used the definition of λ′
t in the second equality.

Similarly, g′′′
t (0)−gQ̃t (0) = 1−λ′

t/λ
Q̃
t = 1−µQ̃1,t/µQ1,t. The second condition in the

theorem guarantees that we can apply the cut criterion to obtain that GQ̃t �c G
′′′
t

for each t, and the closedness of the convex order under mixtures implies that
G̃∗ �c G

∗. Finally, the theorem follows by using that the convex order is closed
under convolution and random summation. ��
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