
AGGREGATE DISTRIBUTIONS 

DISCUSSION BY GARY VENTER 

Background 

Aggregate losses are easily defined as the sum of individual claims, but the 
distribution of aggregate losses has not been easy to calculate. In fact, this has 
been a central, and perhaps the central, problem of collective risk theory. The 
mean of the aggregate loss distribution can be calculated as the product of the 
means of the underlying frequency and severity distributions; similarly, there 
are well known formulas for the higher moments of the aggregate distribution 
in terms of the corresponding frequency and severity moments (e.g., see [5] 
Appendix C). However the aggregate distribution function, and thus the all 
important excess pure premium ratio, has been awkward to calculate from the 
distribution functions of frequency and severity. It is this calculation problem 
that is addressed and solved in this important paper. The result is generalized 
somewhat to the case where the severity distribution is known only up to a scale 
multiplicative factor, which itself follows a specific distribution (inverse 
gamma). In this review the approach in the paper is abstracted somewhat in an 
attempt to focus on the areas where the specific assumptions come into play. 

Principal Idea 

The derivation of the results involves comblex mathematics, but the results 
themselves and the ideas behind the derivation can be easily understood. It is 
not necessary to know what a characteristic function or a convolution or a 
complex’number is to understand these basic ideas and to use the results. The 
following properties of the characteristic function are germane to this under- 
standing. 

1) It is a transformation of the distribution function. 
2) It has an inverse transformation; i.e., the distribution function can be 

calculated from the characteristic function. 
3) The characteristic function of aggregate losses can be calculated from 

the moment generating function of frequency and the characteristic function of 
severity. 

The basic idea, then, is to calculate the characteristic function of severity and 
the moment generating function of frequency; use them to compute the char- 
acteristic function of aggregate losses; and, use that to calculate the distribution 
function of aggregate losses and the excess pure premium ratios. 
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None of the above is actually new to risk theory or even to North American 
casualty actuaries. What is new and is the heart of this paper’s contribution 
centers around a snag in the above method: the characteristic function of severity 
is not directly calculable from the distribution function in most cases. The 
gamma severity is an exception and Mong presented its use to the CAS in this 
context in the 1980 call paper program. The authors point out that the charac- 
teristic function is also calculable when severity is piecewise linear, and the 
solution they present is for this case. They then assert that any severity distri- 
bution needed in property-casualty practice can be closely approximated by a 
piecewise linear form, which seems reasonable, and thus that this method is 
completely general. This summarizes the basic ideas of the derivation. 

Results 

The results can be expressed fairly simply without reference to complex 
numbers. The formulas below are essentially those derived in the paper, although 
generalized slightly in that they hold for any severity random variable S, not 
just one that is piecewise linear, and for binomial or negative binomial frequency 
with parameters c and A, defined below. Mong’s paper and others have also 
presented very similar general formulas. As usual, E denotes the expected value. 

Result 1: F, the aggregate distribution function, can be expressed as 

F(x) = ‘h + L 
I 

m sin (g(t) + LX) dt 
7r 0 tAt> 

whereflt) = [(1 + CA - cXE(cos t+S))* + (chE(sin tS))*][l/2c] 
g(t) = (-l/c) arctan [&sin tS)l((l/c X) - E(cos &))I. 

Result 2: The expected losses excess of retention X, EP(x), can be calculated 
as 

I 

m 
EP(x) = p - (x/2) + (l/IT) (l/flt)t*) (cos (g(t)) - cos (tx + g(t)))dt 

0 

where p is the expected aggregate losses. 

This is a very nice formula in that 1) aggregate excess losses can be computed 
without computing the loss probabilities; 2) the integral converges well before 
infinity because of the t* term; and 3) its error structure can be analyzed. 

Following Mong, the authors transform the integrals by a change of variables 
t + t/u. It is not clear that this is necessary or even useful. 
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Note that the authors use the negative binomial in the form 

Pr (Y = y) = 
( 
y + :‘” -1) (1 + CA)--‘” (&)y. 

This has mean A and ratio of the variance to the mean of 1 + CA. Taking p = 
l/(1 + CA) and OL = l/c gives the more usual form 

pr (y = Y) = 
( 

Ci + % - ’ 
1 P” (1 - p)‘. 

Formulas for E(cos tS) and E(sin 6) (denoted by the authors as h(t) and k(t) 

respectively) for piecewise linear S are found as formulas 5.12 and 5.13 of the 
paper. This is where the piecewise linear assumption is used. Mong’s results 
can be obtained by substituting the corresponding formulas for the gamma 
severity, namely E(cos 6) = (cos (r arctan t/a))/ (1 + ?/a’)“* and &sin tS) = 
(sin(r arctan t/a)) / (1 + t*/a*)‘/*, where r and a are gamma parameters defined 
by E(S) = r/a and Var(S) = r/a*. 

It would also be possible to evaluate E(cos tS) and E(sin 6) for a discrete 
severity distribution function S and apply the above formula. Another possibility, 
which might turn out to be a useful alternative, would be to approximate the 
severity probability density function by a piecewise linear form, rather than 
doing so for the cumulative distribution function. 

To develop the formulas for the needed trigonometric expectations in this 
case, suppose the severity density g(s) between two points ai and ai+, is given 
by g(s) = ci + sdi, and there is a probability p of a claim of the largest size 
a,+,. Then the following formulas can be readily derived using integration by 
parts. 

E(COS tS) = i $ ((ci + Sdi) sin ts + (dJt) cos ts) 
ai+] 

+ p cos tan+! 
I I ai 

&sin 6) = : ,gl ((ci + sdi) cos ts - (dilt) sin ts) 

ai 
+ p sin tan+] 

ai+l 

Note also that for the probabilities to total 1 .O, 

p = 1 - ,$, (ai+, - ai) (Ci + di (a;+ 1 + aJ/2). 

For discrete severity distributions, E(cos tS) and E(sin tS) can also be directly 
calculated. For most severity distributions, these expected values can be cal- 
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culated numerically. In fact, approximating the severity distribution by a piece- 
wise linear function can be regarded as a numerical approximation of E(cos t.S) 
and E(sin tS). Other approximation methods are also possible. As this is the 
only use made of the piecewise linear severity assumption, it can be seen that 
this assumption is not an essential constraint of the method but rather a con- 
venient numerical device. 

In other words, the above formulas for F(x) and EP(x) hold for any severity 
distribution, 5, not just piecewise linear. Since &sin 6) and E(cos 6) need to 
be calculated for many t’s in order to evaluate the integrals, a method is needed 
to calculate these trigonometric expectations. Any number of numerical inte- 
gration techniques could be used for the purpose. The point of view of this 
paper is that approximating the density function of S by a step function provides 
a simple method for the calculation of E(sin tS) and E(cos 6) which is of 
sufficient accuracy for the end results. 

Subsequent discussion with the authors uncovered that this has been sup- 
ported by further empirical tests which began by approximating a smooth density 
(e.g. Weibull) by a step function, calculating F(x) and EP(x), and then refining 
the approximation. It was found that 20 to 25 approximating intervals provided 
a high degree of accuracy in this process. Thus the characteristic function method 
can be applied readily to any severity distribution. 

Although the formulas above use functions that have not been commonly 
employed in casualty actuarial practice, their calculation is straightforward. The 
integrands themselves can be computed on many hand calculators. Carrying out 
the integration requires numerical methods. The authors adopt a brute force 
approach, and it gets the job done. More efficient methods may be possible, 
but a fair amount of expertise in numerical integration would be needed to 
determine if this were so. 

Details of the Method 

The formula for the characteristic function of aggregate losses in terms of 
the frequency moment generating function and the severity characteristic func- 
tion is b(t) = M, (In &(t)). This is readily derived from formula 5.11 of the 
paper. Formulas 5.14 to 5.16 follow directly from this result and the formulas 
for the moment generating functions of the binomial, Poisson, and negative 
binomial distributions. In fact, the proofs of those formulas given are essentially 
derivations of the corresponding moment generating functions. 

The derivations of the above general formulas for F(x) and EP(x) are 
straightforward applications of the inversion formula to the aggregate charac- 
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teristic function. The inversion formula is the standard procedure for getting the 
distribution function from the characteristic function and can be found in ad- 
vanced statistical texts. 

Also, the issue of discontinuities in the distribution function deserves further 
attention. This inversion formula for calculating the distribution function from 
the characteristic function is not exact at points of discontinuity. This is easy to 
miss in Kendall and Stuart, which is cited as the source of the inversion formula. 
Because this has not been taken into account, the above formula for F(x) as 
well as the paper’s formula are incorrect at the discontinuity points. The error 
is an understatement of the distribution function equal to one half of the jump 
at those points. This would be an important issue, for example, if a discrete 
severity were used with the formulas above. In that case the aggregate distri- 
bution would also be discrete, and thus its distribution function would be a step 
function. To evaluate this function at a discontinuity point, then, it would suffice 
to evaluate it just above the discontinuity, in fact at any point before the next 
discontinuity. 

These errors can also be computed from the underlying distributions. In the 
case the authors treat most often, namely a severity distribution with a censorship 
point (e.g., per occurrence limit), the aggregate distribution function is discon- 
tinuous, with jumps at n times the censorship point (n = 0,1,2,. . .) equal to the 
probability of having exactly n claims all of which are total losses (i.e., equal 
the censorship point). These probabilities can be computed from the frequency 
and severity distribution function and then the aggregate can be adjusted by half 
the jump at those points. As an alternative, evaluating at slightly above the 
discontinuity should give a reasonable approximation. The example in Table 
9.2 of the paper illustrates this at x = 1 .OO, where the error is 25%. 

In examples given in Exhibits II-VIII, these adjustments would probably 
not be significant. If, however, the expected number of claims is small (e.g., 
5,1,.02) and/or the probability at the censorship point is large, the error at the 
discontinuity may be significant. In excess insurance/reinsurance applications 
both these conditions often hold. However, as discussed below under recursive 
computation, the characteristic function method may not be the most efficient 
in such applications in any case. 

Parameter Uncertainty 

The parameter uncertainty issue is an important one and is well considered 
in the paper. For large individual risks or for insurance companies, this uncer- 
tainty can far outweigh the variation that can occur from randomness within 
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known frequency and severity distributions. For example, parameter uncertainty 
can arise from severity trend and development. Although these may also affect 
the shape of the severity distribution, they have definite effects on its scale. 
The authors treat the situation in which the severity distribution is known up to 
a scale multiplier which is itself inverse gamma distributed. (Actually, they 
present this as a divisor which is gamma distributed.) The gamma is selected 
because it leads to tractable results. Note that applying a scale multiplier 
to severity is equivalent to applying the same multiplier to aggregate losses. 
This is not true for frequency, as increasing the number of claims changes the 
shape of the aggregate distribution. This is reflected in the standard formulas 
for the coefficients of variation and skewness of aggregate losses (e.g., [5], 
Appendix C) . 

The derivation in Appendix A of the paper shows that the gamma assumption 
for a scale is not absolutely required. What is required is a method of calculating 
the characteristic function of this divisor. This characteristic function can then 
be plugged into the formulas Al and A2 to yield expressions for the aggregate 
distribution function and the excess pure premium, respectively. In fact, the 
derivations labelled “case 1” and “case 2” do exactly that for the degenerate 
and gamma divisors, respectively. 

Estimating the parameters for the mixing distribution is a problem. The 
mean can be selected to give the proper severity mean. The variance is more 
difficult to arrive at. A study of historical errors in trend and development 
projections could be useful in this regard. The variance of accident year or 
policy year loss ratios for a large segment of the industry, where process variance 
can be assumed minimal, should also be a viable approach. The authors seem 
to suggest comparing the observed variance in loss ratios with the theoretical 
variance that would occur without parameter risk in order to estimate the degree 
of parameter risk. This also seems to be a potentially useful approach. 

The inverse gamma distribution, i.e., the distribution of X where l/X is 
gamma distributed, has density fix) = B e-“xa + T(r) (@I)“‘. This is a fairly 
dangerous probability distribution, more so than the gamma, in that only finitely 
many moments exist. In fact E(X”) = T(r - n) + p’??(r) exists if and only if 
n < r. It is an open question whether or not this will prove appropriate for a 
mixing distribution. 

Besides trend and development factors, parameter uncertainty also arises 
from risk classification. For computing the aggregate loss distribution of a large 
and diverse portfolio of risks, this may not be an important factor. However, 
for a single risk or a carrier specializing in a few classes, this could be an 
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essential consideration. If the risk is not typical of the classification or the class 
rate is based on insufficient data, the dispersion of possible results will be 
greater than frequency and severity, considerations might suggest. Historical 
errors in trend and development will also understate the parameter risk in this 
case. 

The parameter uncertainty approach discussed by Btihlmann [2] and devel- 
oped further by Patrik and John [4] can also be used with the characteristic 
function method. Biihlmann allowed all parameters of the distributions to have 
uncertainty and introduced a probability function, called the structure function, 
to describe the relative weights given to different parameter sets. If the structure 
function is approximated by a finite number of points, the distribution function 
of aggregate losses can be calculated for each parameter set by the authors’ 
method and then weighted together by the structure function. This gives a quite 
general method of dealing with parameter uncertainty. 

Recursive Computation of Aggregate Functions 

Another method of computing the aggregate distribution function was re- 
cently developed by Panjer [3] generalizing Adelson [ 11. It is interesting to 
compare this to the current paper. 

Panjer’s method involves a recursive formula for F(x) based on discrete 
severity distributions. For his formula the severity probability, function must be 
given at every multiple of some unit value up to the largest possible loss size, 
for example g(1) = .5, g(2) = .3, g(3) = .l, g(4) = .05, g(5) = .05, where 
g is the severity probability function, 10,000 is the unit, and 50,000 is thus the 
largest possible loss. In this case the aggregate losses will also come in multiples 
of the unit. If we now let f denote the aggregate probability, Panjer’s formula 
is 

A4 = i$ (a + b W g(i).lV - 9, 

where a and b come from the frequency distribution. This formula is valid for 
binomial, negative binomial, and Poisson frequencies. For the negative binomial 

Pr (Y = Y) = ( cY + ; - 1) pa (1 - py, 

a = 1 - p and b = (IX - 1) (1 - p). For the Poisson a = 0, b = A, and for 
the binomial Pr (Y = y) = (y) Py (1 - p)“-‘, a = p/p - 1 and b = (m + l)p/ 
1 -p. 
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As an example take the above g in units of 10,000 with Poisson A = 1. 
Thenflx) = X7=1 i g(i) fix 7 1)/x. 

Now f(0) = Pr (N = 0) = e-‘. Thus j(1) = .5e-‘, j(2) = .5 f(l)/2 + 
.3flO) = .425e-‘J(3) = .5A2)/3 + .2f(l) + .lflO) = .8125 e-‘/3, etc. 

Thus the aggregate distribution function can be built up by quite simple 
arithmetic operations using this method. 

The excess pure premium can be derived from the aggregate probabilities. 
The definition in discrete terms is EP(x) = XL”=, (i = x) Ai). Calculating this 
requiresfli) for the largest possible i’s whereas the recursive procedure builds 
up from the smallest. But since p, = CL*=, ifli) is known from frequency and 
severity, if it were possible to calculate p, - EP(x) then EP(x) would fall out. 

Nowp-EP(x=,goifli)-gifli)+xgfli) 
i=x i=x 

x-l X-l 
= igo iAi) + 41 - igo AN. 

x-1 x-1 

Thus let v(x) = ,go ifli), v(0) = 0, and w(x) = 1 - ,Fofli), w(0) = 1. 

Then the excess pure premium can be calculated by 

EP(x) = p - v(x) - x w(x) 

where v and w can be calculated recursively by 

v(x + 1) = v(x) + xflx) and w(x + 1) = w(x) -f(x). 

By approximating the severity distribution with discrete probabilities the 
aggregate distribution and excess pure premium functions can thus be estimated 
recursively. Exhibits 1 and 2 compare this with the characteristic function 
method. Exhibit 1 shows the piecewise linear severity assumed and the approx- 
imating discrete probabilities. A unit of 500 was taken. The largest possible 
claim is taken as 250,000. The discrete approximation was constructed by 
matching cumulative probabilities and average severities at 250 + 500 i points, 
to the extent possible. 

Exhibit 2 shows the cumulative probabilities and excess ratios for the two 
methods. (The excess ratio at x is EP(x) + p.) The excess ratio columns are 
practically identical, suggesting that very little is lost by the discrete approxi- 
mation. The cumulative probabilities are also rather close. In fact, since the 
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characteristic function method does not provide error estimates for cumulative 
probabilities, it is not clear which method is closer to the exact probabilities for 
,the piecewise linear severity. 

Although the recursive formulas are simpler than those of the characteristic 
function method, they do not always take less computation, especially when 
only one or two limits are to be evaluated. On a ground up coverage with a 
high occurrence limit, a large number of points would be needed to approximate 
the severity distribution because a small unit would be needed to represent small 
claims. If, in addition, there are a large number of expected claims, the recursive 
method can be time consuming. If, on the other hand, an aggregate distribution 
is being estimated for an excess occurrence layer where there are few expected 
claims and a large unit can be chosen, this method may be quite efficient. 

The recursive method does not provide a mathematically elegant way of 
accounting for the crucial element of parameter risk. However, this can be 
handled by enumerating a list of possible scenarios (frequency and severity 
functions), calculating the aggregate distribution function for each scenario, and 
then weighting these aggregate functions together by the relative probability 
attached to each scenario. As discussed above, this is more general than a 
gamma distributed divisor approach in that it allows for more types of parameter 
variation. 

In conclusion, the authors have produced a practical, efficient method for 
calculating aggregate probabilities and excess pure premiums. This is not an 
obscure exercise in complex mathematics but a powerful competitive tool for 
those who will use it. 
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EXHIBIT 1 

AGGREGATE Loss DISTRIBUTIONS 
COMPARATIVE ASSUMPTIONS 

Frequency: Poisson A = 13.7376 

Piecewise Linear CDF 

Limit (000): 1 5 6 7 8 9 
Cumulative Prob. 

- - - - 
: 38935 .77870 .78438 .7898 1 .79498 .79993 

10 12.5 15 17.5 20 25 35 50 - - - - - - 
.80466 .81564 .82553 .83449 .84264 .85690 .87927 .90280 

75 100 125 150 175 200 225 250 - - - - - - - - 
.92739 .94256 .95277 .96009 .96556 .96979 .97316 .97590 

Amount: 
Probability: 

4500 

.054731628 

Discrete PDF 

500 1000 

.38326640625 .03041796875 
5000 

.019691497 

249,500 250,000 

.0000685 .0241137 

Mean 

Severity 18,198 
Aggregate 250,000 

1500 to 4000 

.04866875 each 500 
5500 to 249.000 at each N = 5OOk 

Piecewise linear probability 
from N - 250 to N + 250 

Moments 

Coefficient of 
Variation 

2.6660 
.7667 

Coefficient of 
Skewness 

3.6746 
1.0744 



Aggregate 
LOSS 
ow 

Characteristic Recursive 
Function Method Method 

Cum. Prob. -- Excess Ratio Cum. Prob. Excess Ratio 

25 .0508 .9016 .0516 .9016 
50 .1291 .8107 .1298 .8107 
75 .2009 .7273 .2015 .7272 

100 .2616 .6507 .2683 .6507 
125 .3289 .5806 .3295 .5806 
150 .3843 .5163 .3848 .5163 
175 .4341 .4573 .4346 .4573 

200 .4788 .4030 .4793 .4029 
225 .5189 .3529 .5193 .3529 
250 .5548 .3066 .5552 .3066 
275 .6034 .2642 .6040 .2642 
300 .6556 .2213 .6561 .2213 
325 .7008 .1951 .7013 .1951 
350 .7405 .1672 .7408 .1672 

375 .I149 .1431 
400 .8047 .I221 
425 .8303 .1039 
450 .8524 .0880 
415 .8714 .0742 
500 .8878 .0622 
525 .9045 .0518 

.7152 .1431 

.8049 .I221 

.8305 .I039 

.8526 .0880 

.8716 .0742 

.8879 .0622 

.9047 .0518 

550 .9201 .0430 .9203 .0430 
575 .9332 .0351 .9333 .0357 
600 .9442 .0296 .9443 .0296 
625 .9534 .0245 .9535 .0245 
650 .9611 .0202 .961 I .0202 
675 .9675 .0167 .9675 .0167 
700 .9128 .0137 .9729 .0137 

725 .9773 .0112 .9113 .OI 12 
750 .9810 .0091 .9810 .0091 
775 .9844 .OO74 .9844 .0074 
800 .9873 .0060 .9873 .0060 
825 .9897 .0048 .9897 .0048 
850 .9916 .0039 .9916 .0039 

AGGREGATE DISTRIBLITIONS 

EXHIBIT 2 

AGGREGATE Loss DISTRIBUTIONS 

COMPARATIVE SUMMARY 

13 


