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TRANSFORMED BETA AND GAMMA 
DISTRIBUTIONS AND AGGREGATE LOSSES 

GARY VENTER 

Abstract 

Distribution functions are introduced based on power transformations of beta 
and gamma distributions, and properties of these distributions are discussed. 
The gamma, beta, F, Pareto, Burr, Weibull and loglogistic distributions ares 
special cases. The transformed gamma mixed with a gamma yields a transformed 
beta. 

The transformed gamma is used to model aggregate distributions by match- 
ing moments. The transformed beta is used to account for parameter uncertainty 
in this model. Calculation procedures are discussed and APL program listings 
are included. 

The transformed gamma is compared to exact methods of computing the 
aggregate distribution function based on the entire frequency and severity dis- 
tributions. 

INTRODUCTION 

For pricing aggregate covers it is useful on occasion to have a way to 
estimate the distribution function for aggregate losses from the moments of this 
distribution. The usual approximation methods are designed primarily to cal- 
culate percentiles of the far right tail for mildly skewed distributions (e.g., see 
Pentikainen [9]). The gamma distribution has been suggested for this purpose 
(e.g., Hewitt [7]). However, the skewness of the gamma is always twice the 
coefficient of variation (see Hastings & Peacock [6]). Adding a third parameter 
to the gamma has been suggested by Seal [IO], but the added parameter shifts 
the origin, sometimes resulting in the possibility of negative losses, which is 
often unsatisfactory. The transformed gamma distribution offers an alternative 
third parameter that affects the shape of the distribution but not its location. 

The transformed beta and its special cases could be tried in this regard, also. 
However, its principal application herein is to deal with one kind of parameter 
uncertainty in the transformed gamma. The distributions are introduced below 
and then applications are discussed for each. 
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TRANSFORMED GAMMA AND TRANSFORMED BETA DISTRIBUTIONS 

Transformed Gamma 

The gamma function at r is defined as r(r) = E t’-‘e-‘dt. The percentage 
of this integral reached by integrating up to some point x defines a probability 
distribution, i.e., the probability of being less than or equal to x. The gamma 
distribution usually is given by adding a scalar transformation of the variable; 
i.e., the probability of being less than or equal to x is given by the percentage 
of the integral that occurs up to )cr for some positive number A. The transformed 
gamma distribution adds a power transformation; i.e., the cumulative probability 
is given by: 

G(x;r,a,h) = Pa tr- ‘e-‘dt 

Ur) 

This distribution will be considered below as a model for aggregate losses 
although it may be a reasonable candidate for severity distributions as well. As 
it has three parameters it can match three moments of the distribution being 
modeled. 

The gamma and exponential distributions are special cases given by 01 = 1 
and cx = r = 1 respectively. The Weibull distribution is also reached by taking 
r = 1. Thus the transformed gamma distribution provides a common general- 
ization of the gamma and Weibull distributions and offers the possibility of 
improved fits whenever either have been found approximately suitable. 

The moments are given by 

and the moment distributions 

$$x”dG, 
EW”) 

are given by G(a; (r + (nla),a,h). The probability density function is 

ax 
g(x,r,wV = I (W 

or- le-(hr)a 

These formulas require n > - w but not necessarily an integer. 
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Finding parameters r, 01, and A from data involves the solution of non-linear 
equations whether matching moments or maximum likelihood is used. These 
equations can be quite readily solved by numerical means, e.g., Newton- 
Raphson iteration, as discussed more fully in Appendices A and B. 

To match moments it has proven quite practical to solve for OL and r using 
the known (e.g., known from sampling or calculated from frequency and se- 
verity) coefficients of variation and skewness, which do not depend on A, in a 
system of two equations in two unknowns, and then to solve for A using the 
mean. Handy equations are: 

CV2 + 1 = T(r + 2/o) T(r) t T(r + W2, and 
(SK x CV3) + 3cV2 + 1 = I+ + 31~4 Q-j2 + r(r + I/Ix)~, 

where CV is the coefficient of variation and SK skewness. See Appendix A for 
a discussion of how to solve this system. 

Maximum likelihood techniques are discussed in Appendix B. 

Once the parameters r,oL, and A have been estimated, the expected losses, 
higher moments, and percentiles of the aggregate layer from a to b can be read 
from the distribution. For example, expected losses for the layer are expected 
losses excess of a less expected losses excess of 6. Define f?(a) to be the ratio 
of expected losses excess of a to all expected losses, i.e., 

It is not difficult to show that 

R(a) = 1 - w - & (1 - G(a)) 

So far this is valid for any positive distribution G. Now using the moment 
ratio property of the transformed gamma: 

R(a) = 1 - G(a;(r + (I/a)), a,A) - ,,p::‘&, (1 - G(a;r,d)). 

Thus, if we knew how to compute the probability distribution function G, the 
aggregate layer expected losses would follow immediately. G can be calculated 
using numerical integration, but there is a series expansion for the incomplete 
gamma function that is also fairly quick to use. The incomplete gamma function 
is defined as 
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fG(x;r) = 
i 

x 
fete-’ dr + r(r). 

0 

Then G(x;r,a,A) = IG((Ax)“;r). From Abramowitz and Stegun [l] formula 
6.5.29 (page 262) the expansion 

-1 r-l - i 
fG(x’r) = e I$) -XI-I- i=. k=O r T k 

can be derived. From 30 to 200 terms of this sum generally give acceptable 
accuracy. Exhibit 1 lists an APL program for IG. 

For cases where the expected number of losses is low, there is a non- 
negligible probability that no losses will occur. The transformed gamma can not 
account for this because it is an entirely positive distribution. An alternative is 
a point mass at zero with the conditional probability on losses greater than zero 
being modeled by a transformed gamma. The probability of no losses can be 
computed from the frequency distribution. Formulas for computing the moments 
of the positive (conditional) distribution from the moments of the entire loss 
distribution and the probability of having a loss are given in Appendix C, along 
with standard formulas for computing aggregate moments from those for fre- 
quency and severity.. 

Example 

Professional liability losses limited to $1 million per occurrence for a small 
group of hospitals are believed to have expected losses of $219,316 with 
coefficients of variation and skewness of 1.550 and 2.510 respectively and a 
probability of .I23 of no losses. The aggregate expected losses excess of $1 
million will be calculated by the above method. 

By the formulas in Appendix C the positive portion of the aggregate distri- 
bution has expected losses of 250,000 and coefficients of variation and skewness 
of 1.409 and 2.344. Using the method in Appendix A gives parameters r = 
.2478, (Y = 1.470, and A = 1.144 X 10m6 for the positive portion. Thus the 
entire distribution has the cumulative probability function Pr(L < x) = .123 + 
.877 G(x; .2478, 1.470, 1.144 X 10b6). The excess ratio at a = $l,OOO,OOO 
can be calculated by the methods above to be .0728 for the conditional positive 
distribution, so the excess expected losses are $18,200 = ,0728 X $250,000 
for this piece and .877 X 18,200 = $16,000 for the entire distribution. 

Transformed Beta 

The beta function B(r,s) may be defined as 
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.f;t’- ’ dt 
N-J) = (t + ,),-c, . 

This is a transformation of the more usual definition 

i 

I 
B(r,s) = u’-‘(1 - u)~-’ du 

0 

accomplished by taking t = u f (1 - u) or u = t + (t + 1). The beta is related 
to the gamma by 

Wud 
B(r,s) = rcr + s) . 

As in the gamma case a distribution function F may .be defined by the partial 
integral, i.e., 

I 

WP)~ 
F(x;r,s,a$) = 

t r-’ dt 
0 

(, + ,),+, + W-d. 

This will be called the transformed beta distribution. Its density is 

flx;r,s,a$> = 
(dp)(x//p)“‘-’ 

B(r,s)(l + (x/f3)“)“” f 

For r = 1 the closed form 

F(x;l,s,cr$) = 1 - ((x/p)” + l)-’ 

results. This is coming to be known as the Burr distribution, and in turn has 
two special cases, namely 01 = I which is the Pareto, and s = 1 which gives 
the log transform of the logistic. As the logistic is like a heavy-tailed normal 
the loglogistic can be thought of as being like a lognormal with heavier right 
and left tails. Its distribution function 

P” F(x; I,1 ,o;p) = 1 - ~ 
x* + p 

is of particularly simple form. 

The case IX = 1, i.e., F(x;r,s, I ,p) is a version of the transformed beta that 
has been investigated for severity applications. This will be called the general- 
ized-F as its special case cx = I, p = s/r gives the F distribution where 2r and 
2s are integers. The Pareto is also a special case of the generalized-F given by 
r= 1. 
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There is an interesting mixture property of the transformed gamma that 
generates a transformed beta, namely that with a population of transformed 
gamma random variables with fixed r and (Y, and with the transformed scale 
parameter A” itself gamma-distributed across the population, the compound 
process of picking a variable from the population, then taking a realization of 
that variable, is a transformed beta process. This ,i,s proved in Appendix D. 
Several corollary statements follow by taking the special cases of the transformed 
gamma (i.e., Weibull, gamma, and exponential) and mixing by a gamma, viz., 

(a) Weibull mixed by gamma yields Burr; 
(b) Gamma mixed by gamma yields generalized-F; 
(c) Exponential mixed by gamma yields Pareto; 
(d) Weibull mixed by exponential yields loglog/stic. 

Exhibit 2 diagrams this situation. 

Robert Hogg proved (a), (b), and (c) and Gary Patrik indepen- 
dently proved (c). The transformed beta and gamma distributions originally 
were developed in order to unify these results. Robert Miccolis pointed out that 
the generalized-F is a ratio of two gamma variates’. This suggested the result, 
proved in Appendix E, that if X is transformed betA with parameters r, s, OL, p, 
then l/X is also, with parameters s, r, ct, PM’. 

If X is transformed beta in r, s, (Y, B then 

E(X”) = p” B(r + nlcx, s - n/a) + B(r,s) 

if --(Yr < n C 0~s and non-existent otherwise. This is an example of a distribution 
with unbounded moments for n 2 01s which artses in a natural way as a 
combination of distributions with all moments finite. For OL = 1 (generalized- 
F, Pareto) the moments simplify to 

p-nE(xn) = (r) (r + 1) X . . . (r + n - 1) 1 n r+i-1 
(s - 1) x (s - 2) . * . (s - j) = ,; S-i 

This makes methods of moments parameter estimation quite simple for this 
special case. Maximum likelihood parameter estimation for the transformed beta 
is similar to that for the transformed gamma as covered in Appendix H. Loss 
severity distributions also have been fit by the t(ansformed beta and gamma 
distributions by matching sample and formula values of the excess ratio R(a) 
in a manner similar to that in Harwayne [S]. 

As with the transformed gamma, the moment distributions are of the same 
form as the original distribution, in fact 
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i 

II 

x” dF, + E(X”) = F(a;r + n/a, s - nlcx, (Y, p). 
0 

Thus, as with the transformed gamma, a calculation of excess losses can be 
made if the cumulative distribution can be calculated. This has proven to be 
most practically accomplished through numerical integration. Appendix F dis- 
cusses one method. The moment distribution formulas for the transformed beta 
and gamma show that the Burr and Weibull moment distributions do not main- 
tain the original form, i.e., r = 1. 

The mixture derivation of the transformed beta provides an interesting way 
to deal with so called “parameter risk.” It is fairly plausible that aggregate 
losses for a given company (insured or insurer) are distributed transformed 
gamma and that the shape parameters r and OL are fairly well known and stable 
but because of uncertain trend (or other factors) there is substantial uncertainty 
about the scale parameter A, which relates to the overall level of expected 
results. If A” is gamma distributed in s and y then the overall aggregate 
distribution is transformed beta in r, s, ct, p where B = y”O. It also is not 
difficult to show that A* is gamma in s, (Y means that A is transformed gamma 
in s, OL, B (see Appendix G). Thus it can be concluded that if aggregate losses 
are transformed gamma in r, (Y, A where A is unknown but is itself transformed 
gamma in s, IX, B (same a) then the aggregate losses are transformed beta in 
r, s, a, P. 

In theory it would be a great coincidence if the uncertainty about A had the 
same parameter CY as did the aggregate losses themselves. As a practical tech- 
nique for quantifying this uncertainty, however, it should not be too burdensome 
to use the rx already in hand for aggregate losses. There will still be two 
parameters, s and B, available to match to the uncertainty the analyst feels is 
inherent. 

There are several ways in which s and B could be determined. Different 
values could be tried and the 25th, 50th, and 75th percentile A calculated for 
each, with the corresponding percentile of aggregate expected losses 
r(r + l/o) + AT(r) following. These can be compared with the uncertainty 
that seems inherent in the overall level of losses. The latter uncertainty can be 
estimated by trying to combine the uncertainties in the trend, development, and 
other factors used to estimate the overall level. The regression statistics used in 
developing these factors may be helpful if regression was used. 

Another approach to measuring the distribution of A is using industry loss 
ratios. Expected losses for an aggregate loss distribution with cdf G(x;r,a,A) 
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are r(r + (l/a)) f Al+). Thus, for fixed r,a, the reciprocal of the aggregate 
losses, and thus the reciprocal of the loss ratio, is proportional to A. Therefore 
if A is unknown but is a realization of a random variable A which is transformed 
gamma in s, LX, p, where (Y is fixed, the shape parameter s can be estimated by 
looking at the historical distribution of loss ratio reciprocals. This would measure 
some of the variation that would occur even if A were known, however. An 
alternative is to look at some broader base of comparable experience, such as 
the line for the industry or state or class in question where the process variance 
is minimal and hence the principal source of variation is the parameter uncer- 
tainty. Depending on the similarity between the company in question and the 
broader base as to projection methods for trend and loss development, the 
stability of the historical data base, and so forth, this approach may give a 
reasonable estimate of the parameter uncertainty. 

Estimating p !hen could proceed by matching the formula E(l/A) for the 
transformed gamma distribution to the expected value of l/A calculated for the 
year and company in question. For A with cdf G(A;s,o,B) the E(lIA) is 
p r+ - lh) + r( s ) f rom the transformed gamma moment formula. 

Borrowing loosely from our earlier example, suppose a malpractice risk has 
aggregate losses distributed according to the transformed gamma with r = .2478, 
(Y = 1.470 and E( l/A) = 1 + (1.144 X 10e6), where A is transformed gamma 
in s, 1.470, p. Suppose the previous four years of industry malpractice expe- 
rience produced loss ratios of .505, .750, 1.001, and 1.357, which have recip- 
rocals 1.980, 1.333, .999, and .737. The reciprocals average 1.262 and have 
an unbiased sample standard deviation estimate of .5370 for an estimated CV 
of .4255. The formula 

1 + CV’ = r(s + 2/o) r(s) t r(S + l/o)2 then becomes 

1.181 = qs + 1.36) rcs) + rys + .68)2, 
which can be solved numerically to find s = 2.597. Then 

1 + 1.144 x 1O-6 = E(lIA) = p r(s - l/a) + r(s) 
= p r(2.597 - .68) + r(2.579) 

can be solved directly to yield B = 1,288,500. From the transformed 
r = .2478, s = 2.597, (Y = 1.470, p = 1,288,500 expected losses of 

beta in 

P r(r + w us - l/d = 250 ooo 
r(r) Us) 

9 

can be calculated, confirming the calculation of B. 
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The expected losses excess of $1 million in the aggregate increase substan- 
tially when this additional uncertainty is included. For this transformed beta an 
excess ratio of .1348 can be computed at $1 ,OOO,OOO which yields excess 
expected losses of $33,700 compared to .0728 and $18,200 for the transformed 
gamma. 

The great disparity between these figures comes from the wide divergence 
in loss ratios in the period studied. If the uncertainty in A really is so great that 
next year’s loss ratio for the whole industry can come out anywhere in the range 
.50 to I .35, then there is a much greater chance that total losses for a small 
segment of the industry will exceed the target $1 million. 

For other more stable lines a similar analysis would show a much smaller 
difference. In those cases there is a danger that the potential variation in level 
would be understated by looking at industry loss ratios. Swings in calendar year 
ratios may be dampened by reserve changes. Also, a particular sector of the 
industry would probably have wider variation than the total industry in the 
degree to which the proper level could be projected. This would be important 
if the company under study were concentrated in one area. The selection of the 
parameter s probably should be made with a good deal of judgement because 
of these considerations. 

SUMMARY AND EXTENSIONS 

The above gives a method of approximating the distribution function of 
aggregate losses from the moments of that distribution, based on the transformed 
beta and gamma distributions. Since a distributional assumption is involved, 
the method is likely to be less precise than the exact methods of Adelson [ 111, 
Panjer [ 121 and Heckman and Meyers [ 131. Those methods do, however, require 
more input information, namely the underlying frequency and severity distri- 
bution functions, and they also require substantially more computation. As 
computing becomes faster and less expensive and as good parameterized fre- 
quency and severity distributions become available those methods become in- 
creasingly viable, and the assumption of a distributional form for aggregate 
losses becomes more avoidable. Methods based on moments only are nonethe- 
less of definite value at present. 

The transformed beta distribution is a good candidate for casualty loss 
severity distributions, because it generalizes the Pareto and Burr which have 
been used with moderate success. The problems of trend and development by 
layer of loss have yet to be settled entirely in casualty lines, however, especially 
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with regard to having factors that are independent of distributional assumptions. 
Thus, there currently is a fair amount of uncertainty as to casualty severity 
distributions. 

The transformed gamma may be useful in loss severity, for example, in 
workers’ compensation. Also, the inverse transformed gamma, i.e., the distri- 
bution of Y when X’= 1 f Y is transformed gamma, is a heavy-tailed distribution 
which may have application to casualty loss severity. This distribution function 
is; 

G,CV) = id”*’ ‘F;;;‘+’ dt 

and E(X”) = A” r(r - n/a) + r(r) for n < ra. 

A problem that sometimes arises with maximum likelihood estimation with 
these distributions is that no maximum exists. Usually this happens because the 
maximum likelihood, given OL, increases as OL decreases. After some point the 
increase becomes negligible however. One alternative in this case is to pick a 
“low enough” value of OL and maximize the likelihood fixing that value. This 
usually gives much better fits than the Weibull, gamma, Burr, etc., in these 
cases. 

Another alternative is that there may be other functions that are limiting 
values of these distributions. For instance, in the Burr case, F(x) = 1 - ((xl 
p)” + l)-“, small c1 often leads to large p but with (x/p)” near zero for the 
range of interest, so 1 + (x/p)” is close to e(r’p)” and F(x) is approximately 1 
- e-s(~‘p)o which is a Weibull. Conversely, small p and large OL make (x/p) 
very close to (x/p)” + 1, relatively speaking, so F(x) is approximately 1 - (xl 
p,-““, which is a non-shifted Pareto. Similar relationships may occur for the 
general cases. 

A limitation of the above methods is that the transformed gamma does not 
seem able to take on any combination of moments. For example, it appears that 
the coefficient of skewness must be greater than the coefficient of variation (CV) 
if CV > 1.25. In the gamma case the coefficient of skewness is always twice 
the CV. Thus, the transformed gamma allows a fair amount of departure from 
gamma-ness but not complete latitude. Appendix J discusses this problem and 
suggests alternate approaches. 

Much of the interest in the gamma stems from a 1940 theorem of Lundberg 
[ 141 which shows that under certain conditions the negative binomial frequency 
leads to an approximately gamma aggregate distribution. Since aggregate dis- 
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tributions seem to be positively skewed for the most part, but do not always 
have the skewness double the CV, gamma-like distributions allowing some 
deviation from the gamma are thus appealing candidates for this purpose. 

Exhibit 3 gives the results of a test of the transformed gamma against an 
exact calculation of an aggregate distribution using the characteristic function 
method. The severity distribution is piecewise linear. Approximating the severity 
by a discrete distribution also permits a comparison to the recursive method of 
Adelson and Panjer. Intervals of $500 were chosen for this discrete approxi- 
mation. Details are provided in Exhibit 3. The results show that the two exact 
methods are extremely similar, indicating that not much is lost by the discrete 
approximation to severity. The transformed gamma also is reasonably close over 
a wide range of loss sizes, confirming, at least in this one case, the usefulness 
of this simplifying approximation. 



EXHIBIT 1 

VIG[n]V 
V E+V IG 1;R;X;D 

AINCOMPLETE GAMMA FCT 0 TO X, PARAH R; I IS PRECISION SUGGEST-35 TO 350 
X+VCll 
R+V[23 
+((R>~~)V(~~~CX)VX>~E~~*~R+~)/BIG 
D+((X*(R-l))x*(-X))+!(R-1) 
+END 

F~BIG:R+~E-~~~~~.~+R~~OOOOOOOOOOOO 
FISONETIMES ABOVE LIME NEEDED TO AVOID TRUNCATION PROBLEMS 
BIG:D+(X*~~R)~(X/X~(*XSIR-~)~R-~)~R-I~R-~)~:~~R 
END:E+Dx+/x\XfR+-l+lI 

V 

c51 
[61 
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EXHIBIT 2 

TRANSFORMED GAMMA MIXED BY GAMMA 

WITH SPECIAL CASES 

em 

t 
r-l e-’ dt 

(Transformed Gamma) 

I r= 1 

, _ e-R*a 

(Weibull) 

1 
-I 

ox 
r-l 

Ur) 0 t 
e-’ dt 

=3 (Gamma) 

I 
r= 1 

, - e-o+ 

* (Exponential) 

If 8 is distributed Gamma in S, y: 
f- 1 dt Wl3) 

(t + 1y+, 

(Transformed Beta) g> (Generalized-F) 

I 
r= I r= 1 

1 - (c@)” + I)-” 
(Bun-) 

1 - (x/P + l)y 
(Pareto) 

where p = y “” 



Aggregate 
Loss 

cmoo) 

25 
50 
75 

100 
125 
150 
175 
200 
225 
250 
275 
300 
325 
350 
375 
400 
425 
450 
475 
500 
525 
550 
575 
600 
625 
650 
675 
700 
725 
750 
775 
800 
825 
850 
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EXHIBIT 3 
PART 1 

AGGREGATE LOSS DISTRIBUTIONS 

COMPARATIVE SUMMARY 

Characteristic 
Function Method 

Recursive 
Method 

Cumulative 
Probability 

.0508 

.I291 

.2009 

.2676 

.3289 

.3843 

.434l 

.4788 

.5189 

.5548 

.6034 

.6556 

.7008 

.7405 

.7749 

.8047 

.8303 

.8524 

.8714 

.8878 

.9045 

.92Ol 

.9332 

.9442 

.9534 
,961 I 
,967s 
.9728 
.9773 
.9810 
.9844 
.9873 
.9897 
.9916 

Excess 
Ratio 

.9016 

.8107 

.7273 

.6507 

.5806 

.5163 

.4573 

.4030 

.3529 

.3066 

.2642 

.2273 

.I951 

.I672 

.I431 

.I221 

.I039 

.0880 

.0742 

.0622 

.0518 

.0430 

.0357 

.0296 

.0245 

.0202 

.Ol67 

.0137 

.Ol I2 

.0091 

.0074 

.0060 

.0048 

.0039 

Cumulative 
Probability 

.0516 

.I298 

.2015 

.2683 

.3295 

.3848 

.4346 

.4793 

.5193 

.5552 

.6040 

.656l 

.7013 

.7408 

.7752 

.8049 

.8305 

.8526 

.8716 

.8879 

.9047 

.9203 

.9333 

.9443 

.9535 

.96l I 

.9675 

.9729 

.9773 

.98lO 

.9844 

.9873 

.9897 

.9916 

Excess 
Ratio 

.9016 

.8107 

.7272 

.6507 

.5806 

.5163 

.4573 

.4029 

.3529 

.3066 

.2642 

.2273 

.I951 

.I672 

.I431 

.I221 

.I039 

.0880 

.0742 

.0622 

.0518 

.0430 

.0357 

.0296 

.0245 

.0202 

.Ol67 

.Ol37 

.Ol I2 

.OO91 

.0074 

.0060 

.0048 

.0039 

169 

Transformed 
Gamma 

Cumulative Excess 
Probability Ratio 

.062l ,903 I 

.I260 .8125 

.I895 .7283 

.2520 .6503 

.3129 .5786 

.3717 .5129 

.4280 .4529 

.4817 .3984 

.5324 .349l 

.5801 .3047 

.6245 .2650 

.6658 .2295 

.7039 .I981 

.7388 .I702 

.7707 .I457 

.7995 .I243 

.8255 .I055 

.8488 .0893 

.8696 .0752 

.888l ,063 I 

.9043 .0528 

.9186 XI439 

.93lO .0364 

.9418 .03Ol 

.95ll .0247 

.9592 .0203 

.9660 .Ol65 

.9718 .Ol34 

.9768 .OlO9 

.9809 .0088 

.9844 .0070 

.9873 .0056 

.9897 .0045 

.9917 .0035 
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EXHIBIT 3 
PART -2 

AGGREGATE LOSS DISTRIBUTIONS 

COMPARATIVE ASSUMPTIONS 

Frequency: Poisson A = 13.7376 
Piecewise Linear CDF 

Limit 

ww 

1 
5 
6 
7 
8 
9 

10 
12.5 
I5 
17.5 
20 

Cumulative Limit 
Probability WO) 

.38935 25 

.77870 35 

.78438 50 

.7898l 75 

.79498 100 

.79993 125 

.80466 I50 

.81564 I75 

.82553 200 

.83449 225 

.84264 250 
Discrete PDF 

Cumulative 
Probabilitv 

.85690 

.87927 

.90280 

.92739 

.94256 

.95277 

.96009 

.96556 

.96979 

.97316 

.97590 

Amount 

500 
1000 
1500 to 4000 
4500 
so00 
5500 to 249,000 

at each N = 500k 
249,500 
250,000 

Probability 

.38326640625 

.0304 1796875 
&I866875 each 500 
.05473 1628 
.019691497 
Piecewise linear probability 

from N - 250 to N + 250 
.0000685 
.0241137 

Moments 

Severity 
Aggregate 

Mean Coefficient of Variation 

18,198 2.6600 
250,600 .7667 

Coefficient of 
Skewness 

3.6746 
I .0744 

Transformed Gamma Parameters 

r : .5613125 
a : 1.8300318 
A : 1 + 417896.414 
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APPENDIX A 

SOLVING TWO EQUATIONS 

Many systems of two equations in two unknowns, including the transformed 
gamma moment system in the text, can be solved by Newton-Raphson iteration, 
with the partial derivatives taken numerically. The numerical partial derivative 
of f(x,y) with respect to y, for example, is (flx,y(l + A)) - fl.~,y)) + yA, 
where A is a small number; e.g., lo-‘. Because of limits to computer accuracy, 
A. should not be too small, e.g., A = 10m5’ would be too small for most 
computer installations. This method is quite useful when the partials are not 
available in closed form or are excessively intricate. 

Givenf(x,y) and g(x,y), initial estimates xo and yo and derivativeskc, IV, g,, 
g, the iteration proceeds by setting 

Xi+, = Xj - (fg.v - gLJ + cfxs, - &fJ 
yi+ I = yi - (gfx - fgx) + (j&y - g.&> 

where the functions and derivatives are evaluated at (xi,y;). See Conte and de 
Boor [3] page 86 for details. 

Exhibit Al gives an APL system for this procedure. The user interactively 
defines the equations to be solved. Any user-defined functions may be called in 
this process. A sample run of the system is shown in Exhibit A2. 



EXHIBIT Al 
PAGE 1 

VDELUXENRCUIV 
V DELUXENR;AA;AB;LOOPTOL;DELTOL;MODEFLRG;PFQA;PFQB;PGQA;PGQB 

cl1 AWRITTEN BY STAN STIEFEL 
CZI ‘SPECIFY ONE FUNCTIOI~AL RELATION. . .’ 

c31 ‘USE THE VARIABLE NAllES A AIlD B FOR THE UNKNOVNS.’ 
‘FQ’ EIAKEFX D 
‘SPECIFY THE OTHER RELATION’ 

C61 ‘GQ’ HAKEFX PI 
c71 ‘EHTER INITIAL VALUE FOR A’ 

C81 A+ti 
c91 ‘EIITER INITIAL VALUE FOR B’ 

cl01 B+[7 
cl11 MODEFLAG+lt,DELTOL-DELTOL+LOOPTOL+O.OOOOl 

‘IiOULD YOU LIKE TO USE DEFAULT CONDITIONS (0)’ 
‘OR SEE A HENU OF OPTIONS (1). . .O OR 1’ 

cl41 ~b/'I.lEl?Ll' 
cl51 LP:PARTIALS DELTOL 
cl61 A+A-AA+(DET(2 2 p(A FQ B).PFQE.(A GQ B).PGQE))‘DET 
cl71 t:IODEFLAG/'PARTIALS DELTOL' 
:;;; B+B-AB+(DET(2 2 pPFQA.(A FQ B).PGQA.(A GQ B)))+DET 

+(v/L~~PT~L<I(AA,AB)~(A.B)+O=A,B)/LP 
‘;B 

V 

VIIAKEFXCCl1V 
V NAME NAKEFX RELAT;X;TITLE 
+(O=‘=‘cRELAT)/DID 
RELAT[RELATt’=‘l+‘-’ 

DID:TITLE+‘RSLT’,NANE,‘+A ‘.NAIHE.’ B’ 
RELAT+‘RSLT’,NAHE.‘+‘,RELAT 
RELAT+RELAT.(O.SxX+IX+(pTITLE)-pRELAT)p’ ’ 
TITLE+TITLE.((pRELAT)-(pTITLE))p’ ’ 
OWA+nFX TITLE.CO.51 RELAT 

V 

(2 2 pPFQA.PFQB.PGQA.PGQB) 

(2 2 pPFQA.PFQB.PGQA.PGQB) 



EXHIBIT Al 
PAGE 2 

VNENU[OlV 
V NENU 
'FOR PURPOSES OF TAKING NIJIIERICAL DERIVATIVES, FUIlCTIONS WILL BE EVALUATED AT A. A-AA. B. B-AB,' 
‘AA AND AB ARE SPECIFIED AS FRACTIONS OF A AAD D. . .lE-5 IS TUE DEFAULT. PLEASE SPECIFY THE FRACTION.' 

c31 

;:3 
C61 
c71 
is1 
c91 
Cl01 
Cl11 

Cl1 

E:; 
C&l 

Cl1 

DELTOLd 
‘ITERATION I!ILL BE CONSIDERED COMPLETE YUEN BOTR A AND B RAVE CKALiGED BY LESS THAN SOME FRACTION OF THEWSELVES’ 
'DEFAULT IS lE-5. PLEASE SPECIFY TllE FRACTION.' 
LOOPTOL+O 
'SEQUENCE OF CALCULATION CAN BE EITUER OF TOO OPTIONS' 
'(0) GET PARTIALS. GET UE" A. GET NEY C.' 
'(11 GET PARTIALS, GET NEW A. GET PARTIALS, GET NEW B.' 
'DEFAULT IS 0. PLEASE SPECIFY 0 OR 1.' 
lIODEFLAC+O 
V 

VPARTIALSCOIV 
V PARTIALS XXXX:Z 
PFQA+((A FQ Bl-((A-2) FQ BlltZtlE-lOrIZ+XXXXxA 
PGQA+((A GQ B)-((A-Z) GQ B)liZ 
PFQB+((A FQ B)-(A FQ(B-Z)))tZclE-lGrIZ+XXXXxB 
PGQB+((A GQ B)-(A GQ(B-Z)))tZ 
V 

VDETCOlV 
V Y+DET X 
Y+(xcl;llxxc2;23)-xcl;2lxxc2:ll 
V 
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EXHIBIT A2 

vcvc01v 
V Y+A CV R 

cl1 Y+(!-l+R)x(:-l+R+2SA)+(!-l+R++A)*2 

c21 Y+(Y-1)*0.5 
V 

VSKWCUlV 
V Y+A SKW R 

Cl1 Y+( ( :- l+R)*2)X(:-l+K+3tA)+(:-l+R++A)*3 

c21 Y+Y+2-3x(:-l+R)x(!-l+R+2iA);(!-l+R++A)*2 

c31 Y+Yt(A CV II)*3 
v 

DELUXENR 
SPECIFY ONE FUNCTIONAL RELATION. . . 
USE THE VARIABLE NAMES A AND B FOR THE UNKNOWNS. 

(A CV B)=1.409 
SPECIFY THE OTHER RELATION 
(A SKC! B)=2.344 
ENTER INITIAL VALUE FOR A 
ii: 

1.2 

ENTER INITIAL VALUE FOR B 
II: 

.3 

WOULD YOU LIKE TO USE DEFAULT CONDITIONS (0) 
OR SEE A MENU OF OPTIONS (1). . .OOR 1 

ill: 
0 

A : 1.41 B: 0.2478 

A CV B 
1.400 

A SKU B 
2.344 

Cl1 

E:3 

c41 
c51 
C61 
[‘II 
[Sl 
c91 

V Y+A SKEN2 R 
N+t-l+R++A 
M+(-tN)+R++A 
o+:(-N+~)+R+~A 
S+(-tIi)+R+3fA 

T+:(-N+l)+R+3tA 
U+(x/S+M)x(T+O) 
Y+((! -1+R)*2)xUi(:-l+R++A)*2 

Y+Y+~-~x(~-~+R)x(!-~+R+~+A)+(:-~+R++A)*~ 
Y+Yi(A CV R)*3 
V 
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APPENDIX B 

MAXIMUM LIKELIHOOD FOR THE TRANSFORMED GAMMA 

Maximum likelihood in the case where there are no problems of truncation 
or censorship of the sample reduces to one non-linear equation to solve for (Y, 
then linear equations for r and A. The OL equation is somewhat intricate but is 
solved easily numerically. Given a sample yi, i = 1 to n, the likelihood function 
is 

L(r,o,h) = fi c~h~~y~-’ e-(hyi)n + T(r) and 
i=l 

In L(r,ol,X) = n In OL + n OL r In A - n In T(r) 

Setting the partial derivatives of this to zero, and denoting the derivative of 
In T(r) by rJ~(r) yields the likelihood equations: 

+ (ar - 1) C In y; - A” i y?. 
i--l 

Substituting for r in (a) via (b) gives a single equation for OL which when 
solved allows r and A to be calculated from (b) and (c). This is a generalization 
of the method found in Hachemeister [4] for the gamma distribution. Note that 
to solve (a), 

and y” = 1 
n i 

i=l 
y? In Yi9 

must be calculated from the sample at each iteration. 

As suggested on page 152 of Aquino [2], differentiating Abramowitz and 
Stegun’s [l] formula 6.1.34 (page 256) gives the series approximation 

+(z) = r(z) $ kck zk-‘, 
k=l 

where cl to c26 are as shown in Exhibit B 1. This expansion gives more than 13 
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place accuracy on [1,2] and the recursive relation tJ~(l + z) = $(z) + l/z can 
be used outside of this interval. 

To solve equation (a) with (b) substituted for r we have an equationflo) = 
0 wheref is calculable by computer or calculator. This can be solved iteratively 
by numerical Newton-Raphson: 

Start with a guess CXO. Then let 

ait1 = aj - f(W) 
flai (1 + A)) - flai) 

ai 

i.e. (Yi+l = olj 

( 

l- 
A 

.flai (1 + A)) 

Jai) - ' 1 

where A is small, e.g. lo-‘. 

A reasonable starting value o0 usually is given by calculating the sample 
ratio of the coefficient of variation over half the coefficient of skewness,, as this 
is greater, less than, or equal to 1 when (Y is. 

As an alternative, the secant method 

cli+l = CXi - 
Aai> (W - C&-l) 

.!I&) - Jai- I) 

can be used to solve for (Y. This involves only one computation off each 
iteration, so it may be faster than Newton-Raphson iteration. 
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EXHIBIT Bl 
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k 

r 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

SERIES EXPANSION FOR (J(Z) 

I)(Z) = l-(z) kg, kctzk-’ 

ck 

-1.00000 00000 000000 
-0.57721 56649 015329 

0.65587 80715 202538 
0.04200 26350 340952 

-0.16653 86113 822915 
0.04219 77345 555443 
0.00962 19715 278770 

-0.00721 89432 466630 
0.00116 51675 918591 
0.00021 52416 741149 

-0.00012 80502 823882 
0.00002 01348 547807 
0.00000 12504 93482 1 

-0.00000 11330 272320 
0.00000 02056 338417 

-0.00000 0006 1 160950 
-0.00000 00050 020075 

0.00000 00011 812746 
-0.00000 0000 1 043427 
-0.00000 00000 077823 

0.00000 00000 036968 
-0.00000 00000 005 100 

0.00000 00000 000206 
0.00000 00000 000054 

-0.00000 00000 000014 
-0.00000 00000 00000 1 



178 BETA AND GAMMA 

APPENDIX C 

AGGREGATE MOMENTS 

A. In terms of frequency and severity moments, assume individual claim sizes 
are independent, identically distributed, and independent of the number of 
claims. 

Let N denote number of claims, X claim size, L aggregate losses, p, the 
mean, u the standard deviation, y the coefficient of skewness, c the coef- 
ficient of variation, and 

N, = E W - mdi 
1 

w . 

Then 

a2 = pAdi + (pxuN)* 

YL.a:. = pNyxd + 3pxcMJ + p&d! 

CT: = &A/&; + N2) 

yL = (yxc: + kiN2 + N3) + l&(c: + N2)’ 

c: = ($ + Nz) + k,.q 

B. Moments of conditional (positive) distribution in terms of moments of entire 
distribution and probability of losses being non-zero 

1 - p when a = 0 
F(a) = Pr (L 5 a) = 0 when a < 0 

(1 -p)+pG(a)whena>O 

Then 

YG=~2y~~:.+(~- lMpc:+p-2) 
Ci 



EXHIBIT Cl 

VCONDITMO[iJlV 
V X+P CONDITMO Q;TERbll;TERH2:COEFVAR;GAMEIA 

cl1 RMRITTEI! DY VICTOR PUGLISI 
I21 R THIS PROGRAII CALCULATES CONDITIOBAL MOIIENTS IN T,!E FORM OF THE COEFFICIENT OF VARIATION (CV) AHD THE SKEUHESS 
c31 R (GAMMA) BASED UPON RISKMODEL OUTPUT FOR THE PART OF THE DISTRIBUTION GREATER THAN 0. !! 
:;; R IT TAKES AS LEFT-HAND ARGUNEUT THE PROBABILITY OF CLAIMS BEING LARGER THA,, 0. 

RISKMODEL OUTPUT FOR EACH LAYER DENOTED BY 
CURRENTLY FOUND AT THE TOP OF THE $ 

'PROEABILITY OF LOSS' AND FOR RIGNT-HAND ARGUUENT REQUIRES A TWO 
C61 : ELEHENT VECTOR CONSISTING OF THE COEFFICIENT OF VARIATION AND THE COEFFICIENT OF SKEUNESS FOR EACH MAJOR GROUP. $ 
l-71 0 THESE ARE FOUND IN COLUNHS 6 AND 9 RESPECTIVELY OF THE RISKNODEL OUTPUT.' u 
CSI COEFVAR+((P.Q111+2)+P-11*0.5 
c91 TERMl+(P*2)xQC2]xQC11+3 
cl01 TERMZ+(P-l).(3xPxQ[ll*2)+P-2 
[Ill CAMNA+(TERHl+TERN2)iCOEFVAR*3 
cl21 X+COEFVAR.GANMA 

v 
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APPENDIX D 

TRANSFORMED BETA IS TRANSFORMED 
GAMMA MIXED BY A GAMMA 

The transformed gamma density function 

can also be parameterized as OL WCF-‘~-~‘~ + T(r), taking 8 = A”. Given a 
family of such random variables with (Y and r fixed and 8 itself gamma distrib- 
uted with parameters s and y, i.e., having density yS V-’ e-” + T(S), then 
the compound process is transformed beta. 

To demonstrate this the density for the compound distribution will be cal- 
culated. This is the probability-weighted average of the densities of the family, 
that at x equals: 

which, after the change of variable + = t3(x* + y), becomes 

= rcr) r(s)(xa + ?)r+s 
r(r + S) 

a-Y” xoLr- ’ 
= B(r,s)(x” f Y),~+’ . 
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Now defining p by y = p” gives for the compound density 

Avis xar- I 
a(r+s) 

p- cx as ar- I x 
B(r,s)(x” -I- pa)‘+” = B(r,s)((x/p)” -t l)‘+’ 

= (Cx./(3)(x@)“‘-’ + B(r,s)((x/P)” + l)‘+’ 

which is the transformed beta density. 

APPENDIX E 

RECIPROCAL OF TRANSFORMED BETA VARIATE IS TRANSFORMED BETA 

Let Y = f where X has cdf F(x;r,s,rx,P). 

Now Y s a s X 2 (l/a) so Pr (Y 5 a) = 1 - Pr (X < (l/a) 

Let u = (l/t); t = (l/u); dt = -dulu*. 

Then Pr(Y 5 a) = 1 + - 
‘-’ du 

(1 +“( l/U)r+S U2 

= jj& j”@“” [(u ;-,;r+s] du 
Therefore Y has cdf f(y;s,r,a, l/p). 
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APPENDIX F 

NUMERICAL INTEGRATION BY GAUSSIAN QUADRATURE 

Gaussian quadrature is a method of numerical integration that estimates the 
integral by taking a weighted sum of the value of the function being integrated 
at several points. In general 

where 2yi = (b - U)X; + b + a and Wi and Xi are somewhat complex to 
calculate. Exhibits Fl and F2 give Wi and X; for a few values of n. See 
Abramowitz [l] pages 916-919 for others. Hildebrand [8] discusses the math- 
ematical background. 

This approach works best for functions that can be closely approximated by 
polynomials of degree n. 

The integration of the transformed beta distribution function is more accurate 
if two transformations are made. First the mapping u = tl(t + 1) transforms 
the integral to 

I 

m/m + pa 
FW,s,a,P) = [d-’ (1 - u)“-‘1 du + B(r,s) 

0 

which can be taken as the definition of the function IB. However, the approxi- 
mation of this integral by the above quadrature formula is not close for small 
values of r and s, e.g., below 1. A recurrence relation was derived to express 
IB(x;r,s) as a function of IB (X;T + 1, s + I), putting the integral to be solved 
in a more satisfactory area. This relationship is rslB(x;r,s) = ~~(1 - x)” (s - (r 
+ s)x) + (r + s + l)(r + s) IB(x;v + 1, s + l), and was derived by George 
Phillips from Abramowitz’s [l] formulas 26.5.2 and 26.5.16 on page 944. In 
practice this formula is applied thrice to’get to the r + 3, s + 3 level. Exhibit 
F3 gives a series of APL programs which performs the calculation of F(x; 
r,s,CLP). 
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EXHIBIT Fl 

ABSCISSAS AND WEIGHTS FOR n POINT 

GAUSSIAN QUADRATURE 

183 

n=6 

20.23861 ,“;860 83197 
kO.66120 93864 66265 
kO.93246 95142 03152 

kO.14887’ 43389 81631 0.29552 42247 14753 
50.43339 53941 29247 0.26926 67193 09996 
20.67940 95682 99024 0.21908 63625 15982 
kO.86506 33666 88985 0.14945 13491 5058 1 
kO.97390 65285 17172 0.06667 13443 08688 

n= 10 

n=24 

kO.06405 68928 62606 0.12793 81953 46752 
kO.191 I1 88674 73616 0.12583 74563 46828 
20.31504 26796 90163 0.12167 04729 27803 
20.43379 35076 26045 0.11550 56680 53726 
kO.54542 14713 88840 0.10744 42701 15966 
20.64809 36519 36976 0.09761 8652 1 04114 
kO.74012 41915 78554 0.08619 01615 31953 
kO.82000 19859 73903 0.07334 64814 11080 
kO.88641 55270 0440 1 0.05929 85849 15437 
k0.93827 45520 02733 0.04427 74388 17420 
20.97472 85550 71309 0.02853 13886 28934 
k0.99518 72199 9702 1 0.01234 12297 99987 

0.46791 
0.36076 
0.17132 

Wi 

39345 
15730 
44923 

72691 
48139 
79170 
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8 
9 

10 
II 
12 
13 
14 
I5 
16 
17 
I8 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

X Wi X, Wi 

-.999689503883231 BOO796792065552 49 .016276744849603 .032550614492363 
-.998364375863182 .001853960788947 50 .048812985136050 .032516118713869 
-.995981842987209 .002910731817935 51 .081297495464426 .0324471637141X4 
-.992543900323763 .003964554338445 52 .113695850110666 .032343822568576 
-.988054126329624 .005014202742928 53 .145973714654897 .032206204794030 
-.982517263563015 .006058545504236 54 .178096882367619 .032034456231993 
-.975939174585136 .007096470791154 55 .21CO31310460567 .031828758894411 
- .968326828463264 .008126876925698 56 .241743156163840 .031589330770727 
-.959688291448743 BO9148671230783 57 .273198812591049 .031316425596861 
-.950032717784438 .010160770535008 58 .304364944354496 .031010332586314 
-.939370339752755 .011162102099838 59 .335208522892625 .030671376123669 
-.927712456722309 .012151604671088 60 .365696861472314 .030299915420828 
-.915071423120898 .013128229566962 61 .395797649828909 .029896344136328 
-.901460635315852 .014090941772315 62 .425478988407301 .029461089958168 
-.886894517402420 .015038721026995 63 .454709422167743 .028994614150555 
-.8713X8505909297 .015970562902562 64 .483457973920596 .028497411065085 
-.a54959033434601 .016885479864245 65 .511694177154668 .027970007616848 
-.837623511228187 .017782502316045 66 .539388108324357 .027412962726029 
-.819400310737932 .018660679627411 67 .566510418561397 .026826866725592 
-.800308744139141 .019519081140145 68 .593032364777572 .026212340735672 
-.780369043867433 .020356797154333 69 .618925840125469 .025570036005349 
-.759602341176647 .021172939892191 70 .&I4163403784967 .024900633222484 
-.738030643744400 .021966644438744 71 .668718310043916 .024204841792365 
-.715676812348968 .022737069658329 72 .692564536642172 .023483399085926 
-.692564536642172 .023483399085926 73 .715676812348968 .02273706%58329 
-.668718310043916 .024204841792365 74 .738030643744400 .021966644438744 
-.644163403784%7 .024900633222484 75 .759602341176647 .021172939892191 
-.618925840125469 .025570036005349 76 .780369043867433 .020356797154333 
-.593032364777572 .026212340735672 77 .800308744139141 .019519081140145 
-.566510418561397 .026826866725592 78 .819400310737932 .018660679627411 
-.539388108324357 .027412962726029 79 .837623511228187 .017782502316045 
-.51169417715466X .027970007616848 80 .a54959033434601 .016885479864245 
-.483457973920596 .028497411065085 81 .871388505909297 .015970562902562 
-.454709422167743 .028994614150555 82 .886894517402420 .015038721026995 
-.425478988407301 .029461089958168 83 .901460635315852 .014090941772315 
-.395797649828909 .029896344136328 84 .915071423120898 .013128229566962 
-.365696861472314 .030299915420828 85 .927712456722309 .012151604671088 
-.335208522892625 .030671376123669 86 .939370339752755 .011162102099838 
- .304364944354496 .031010332586314 87 .950032717784438 .010160770535008 
-.273198812591049 .031316425596861 88 .959688291448743 .009148671230783 
-.241743156163840 .031589330770727 89 .968326828463264 .008126876925698 
-.210031310460567 .031828758894411 90 .975939174585136 .007096470791154 
-.178096882367619 .032034456231993 91 .982517263563015 .006058545504236 
-.145973714654897 .032206204794030 92 .988054126329624 XI05014202742928 
-.113695850110666 .032343822568576 93 AK'2543900323763 m39645543384.45 
-.081297495464426 .0324471637140&l 94 .995981842987209 .002910731817935 
-.048812985136050 .032516118713869 95 .998364375863182 Xl01853960788947 
-.016276744849603 .032550614492363 96 .999689503883231 .000796792065552 

BETA AND GAMMA 

EXHIBIT F2 

n = 96 
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EXHIBIT F3 
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vrn[ulv 
P l+*x 10 l~u:YI:YZ:Y3:Y4;Y5:A:u 

I ,,RITTEK EY CEORCE PllILLlPS 
n*ne[ll~l ucc 0 
ncdntzl 
Ylc- Itx\(x.l-x)*ns 
uZ*((o-l)*,3)-X~tA+n-2)+2~,3 
Ylc(Xrl-x1* 0 1 2 
Y’+I.x\(A+G-I)*\6 
Y5~n\~l.~a+l~.n*2~~l.~~+l~.8*2 
R*(ln.B).(YI.+/Y2.U3x~4[1 3 51 
v 

Y5[31)~(X 
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APPENDIX G 

RELATIONSHIP BETWEEN GAMMA AND TRANSFORMED GAMMA 

To show: A* is gamma in S, y if and only if A is transformed gamma in 
s,a,p where p = y’l”. 

Note that Pr(A I A) = F’r(A” I Aa) 

= G(h*;s, 1 ,y) 

= 
I 
dA 

a 
f- ’ e-’ dt 

I 

W)’ 
= f-’ e-’ dt = G(X;s,a,P). 

0 
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APPENDIX H 

MAXIMUM LIKELIHOOD ESTIMATORS FOR 

TRANSFORMED BETA PARAMETERS 

Given a sample xl, . . , I,,, fitting the parameters r, s, (Y, and p of the 
transformed beta by maximum likelihood involves finding the maximum of the 
log-likelihood function 

In L(r, s, a, p) = n In T(r + S) + n In 0L + (w - 1) i In Xi 
i=l 

- (ncxr In p + n In T(r) + n In T(S) + (r + S) i ln(1 + x#)~. 
i=l 

As with the transformed gamma let the derivative of In T(X) be denoted $(x). 
Dividing the partials of In L by n and setting to zero gives the following 4 
equations: 

(r): +(r i- s) = *(r) + In(1 + p/Xi)*) 

(S): +(r + S) = JI(S),+ ln(1 + Xi/p)*) 

(a): l/al + r ln(Xilp) = (r + S)(ln(.Xilp))(p/Xi)” + l)-’ 

(p): r = (r + S)(l + (p/Xi)“)-’ 

where the bar denotes the average over the sample of the barred function. 

The (a) and (p) equations are linear in r and s, so they can be solved to 
yield r and s as functions of cx and p. These can be substituted into the (r) and 
(s).equations to give two non-linear equations in two unknowns (a,P) which 
can be solved by the methods of Appendix A. 

An APL system for solving these equations is shown in Exhibit Hl and a 
run with sample data in Exhibit H2. 
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EXHIBIT Hl 

APL PROGRAtiS FOR 
TRANSFORHED BETA KLE 

VNRFN[n]V 
V ABl+V NRFN AB;YA;YB;J;Z 

Cl1 nWRITTEN BY GARY VENTER 
CZI nNE\JToN RAPBSOti ITERATION FOR TRBET PARAb:S. SAMPLE IN V 
c31 ABl+AB 
c41 Z+lE-7 
[5] TOP:AB+ABl 
C63 Y+V FN AB 

YA+V FN(AB[l]xl+Z).AB[2] 
YB+V FN AB[l].AB[2]rl+Z 

c91 YA+(YA-Y)+ZxAB[l] 
[lOI YB+(YB-Y)+ZxAB[L] 
[ll] J+(YA[l]xYBC2])-YAC2]~YB[l] 
[12] ABl+AB[l]-((Y[l]xYBC23)-YC23xYqCll)fJ 
5;;; AB~+AB~.AB[~]-((Y[~]xYA[~])-Y[~]~YAC~~)~J 

‘2 OLD TOLERANCES 2 NEW ' 
Et;; AB.Y,ABl 

'R.S:';R,S 
Cl71 +(~E-~<+/I-~+AB~~AB)/ToP 
[18] U+Y+V FN ABl 
Cl91 'R,S.ALPHA.BETA' 
C203 R,S.ABl 

V 

:‘4; 
c51 
[61 
c71 
C81 
c91 
Cl01 
Cl11 
Cl21 
Cl31 
Cl41 
Cl51 
Cl61 

VFN[U]V 
V Y+V FM AB;D;F;G;H;N;PS;PR;PRS;DL;LL 

RR AND S ARE GLOBALS 
RV A VECTOR OF OBSERVATIONS, AB IS ALPtlA,BETA 
flY IS A 2 VECTOR TRYING TO GET TO 0.0 FOR TBET NLE 

N++pV 
G+V+AB[2] 
li+@G 
D+l+G*-ABEL] 
F+Nx+/HSD 
H+AB[l]xNx+/H 
D+Nx+/+D 
R+-CH-AB[l]xF+D 
ScRx-1-iD 
G+Nx+/@l+G*AB[l] 
PS+SI s 
Y+H+PS-PR+SI R 
Y+Y.G+PS-PRS+SI R+S 
V 
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EXHIBIT Hl PAGE 2 

vsIcnlv 
V PSIX+SI X;Z;PSIZ;Y;M;N 

cl] APSI FUNCTION IE DERIVATIVE LOG GANIIA FUNCTION 

V 
60 
61 

62 
63 
64 
65 
66 
61 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 

CEE 

1 
0.5772156649015329 

-0.6558780715202538 
-0.0420026350340952 

0.1665386113822915 
-0.0421977345555443 
-0.009621971527877 

0.007218943246663 
-0.0011651675918591 
-0.0002152416741149 

0.0001280502823882 
-2,01348547807E-5 
-I .250493482lE-6 

1.1330272328-6 
-2.0563384178-7 

6.1160958-9 
5.0020075E-9 

-1.18127468-9 
l.O43427E- IO 
7.78238- 12 

-3.6968E- 12 
5.lE-13 

-2.06E- 14 
-5.4E- 15 

I .4E- 15 
lE-16 

;!i; Ll:PSIZ+-( :-l-Z)x+/( 126)xCEExZ*-I+126 
Y+lOOO I Lx 

c73 N+O 
C81 Pl+LXilOOO 
c91 PSIX+PSIZ++/9Z+-l+tY 

Cl01 +(M=O) /O 
[ll] LT:N+N+l 
Cl23 PSIX+PSIX++/aZ+(1000xN-l~+Y+-l~+Y+-l+1looo 
Cl31 4 NW) /LT 
Cl41 +o 
Cl51 L2:Ps1z+-(:z)x+/(~26)xCEEx(Z+1)*-1+~26 
cl63 PSIX+PSIZ++/ttX-1 
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EXHIBIT H2 

SAMPLE RUN OF TRANSFORMED BETA MLE WITH GOOD STARTING ESTIMATES 

V 

2.201825487277711 1.747798995989603 I .555619456471727 1.434261861491408 
1.345898293955564 1.276532762732432 1.219472497925706 1.171009053335359 
1.128878212884788 1.091598560297855 ,1.058149169964544 1.027797375655266 
0.9999999999999999 0.9743434501286376 0.9505056924135983 0.9282311847924588 
0.9073138148639067 0.8875849650558165 0.86890496plO59015 0.8511568358547295 
0.8342416436253031 0.81807496609125 0.8025841905289312 0.7877064064383325 
0.7733867467937893 0.7595770676095318 0.7462348863847357 0.733322520898723. 
0.7208063846790024 0.7086564061646645 0.6968455463959924 0.6853493958275812 
0.674145835167939 0.6632147483965766 0.6525377785832587 0.642098 1190348407 
0.6318803337678372 0.6218702024548765 0.6120545858977834 0.60242 13087964627 
0.5929590571538267 0.5836572881149439 0.5745061504078917 0.5654964138531555 
0.5566194066522674 0.5478669593658831 0.5392313546553542 0.53070528199689 
0.5222817966889851 0.5139542825661741 0.5057164179087162 0.4975621441012036 
0.4894856366454348 0.4814812781759202 0.4735436331613866 0.4656674240036885 
0.4578475082673738 0.4500788567894164 0.4423565324296311 0.434675669228307 
0.4270314517386136 0.4194190942972299 0.4118338199870745 0.404270839030415 
0.3967253263281841 0.3891923978309076 0.3816670853866948 0.374144309660231 I 
0.3666188506509329 0.3590853152547595 0.3515381012078956 0.3439713566152265 
0.3363789340936847 0.32875433833861 I 0.3210906656344104 0.3133805334572376 
0.305615997826835 0.2977884554141212 0.2898885265394574 0.2819059140149433 
0.273829231162068 0.2656457900782352 0.2573413380345932 0.248899725301121 
0.2403024809791267 0.23 15282633825993 0.2225521361535894 0.2133445971882582 
0.2038702484700424 0.1940859297219838 0.1839380254588229 0.1733584487947235 
0.1622584092416313 0.1505182593963702 0.1379699089521555 0.1243638396796979 
0.1093001477080087 0.09205965646857106 0.07106750819518526 0.04089307909136584 

V NRFN 1.521 1.553 

2 OLD TOLERANCES 2 NEW 
1.52, 1.553 I .4569960260502068-6 1.0880126939671898-7 1.520915599542439 1.553092179774157 
R. s: l.441569975759713 6.476705211863293 
2 OLD TOLERANCE.5 2 NEW 
1.520915599542439 1.55x92179774157 2.3,448193943fM4E-1 I 2.4,850983684344,E-12 1.520915603822739 ,.553092175281865 
R.S: I.441699580189243 6.477401387277938 
4.4408920985006268-I6 2,775557561562891E-16 
R. S. ALPHA. BETA 
1.441699614500499 6.477400647693872 1.5209156(10822739 I.553092175281865 
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4PPENDIX J 

TRAYSFORMED GAMMA 

RELATION BETWEEN COEFkICIENTS OF VARIATION AND SKEWNESS 

Empirical investigations suggest that not all pairs of positive real numbers 
can be realized as the coefficients” of variation (0’) and skewness (SKW) of a 
transformed gamma distribution. bar example, as mentioned in the text, for 
CVs of 1.25 and greater the SKW always seems to exceed the CV. 

While not proven analytically, observation suggests the following: 

(1) For fixed r the ratio SKWICY is a decreasing function of alpha. 
(2) If the ratio SKWICV is held constant (by increasing alpha), then the CV 

and SKW increase as r decreases. 
(3) These increases are asymptotic to some finite value as r goes to zero. 

: 
Thus for a fixed SKWICV ratio, the CV and SKW can not exceed a maximum. 

The following table gives these approximate maximum values for selected ratios. 

SKWICV Maximum CV Maximum SKW 

1.4 11.1 15.5 
1.3 3.9 5.1 
1.2 2.0 2.4 
1.1 1.51 1.66 
1.0 1.25 1.25 
.9 1.09 .98 
.83 1.00 .83 
.8 .97 .78 
.I .88 .62 
.6 .81 .49 
.5 .I6 .38 
.4 .71 .28 
.3 .67 .20 
.2 .64 .13 

0.00 .58 0.00 

This relationship thus restricts the values which the CV, SKW pairs can take 
on. As the maxima seem to be increasing functions of the ratio SKWICV, each 
maximum is an upper bound over all lower values of that ratio. For example, 
if the SKW is less than or equal to .83CV, then the CV does not exceed 1 .O. 
Conversely, if the CV is above 1 .O the SKW is .83 or greater. 
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It is interesting to note that the skewness can be negative. This seems 
possible for any value of r. For small r, SKW reaches zero at about an alpha 
of l/r. In the Weibull case (r = 1) zero skewness occurs for a just above 3.6. 

The use of empirical studies in mathematical investigations is of course 
subject to pitfalls. The findings in this appendix should thus be regarded as 
hypotheses until more rigorous demonstrations can be provided. 

Further investigation has also revealed that matching transformed gamma 
moments is not possible if the CV is very small and the SKW is large. In this 
case, it has been possible to match transformed beta moments. The case OL = 
1 often suffices, and this yields closed form solutions for the parameters as 
follows: 

Define Mj = E(X’)IE(Xy for any random variable X. Then the transformed 
beta parameters r and s are: 

r=2 
M3 - M: 

M: + M2M3 -2M3 

s = r + 1 - 2Mzr 
r + 1 - Mzr 

Unfortunately, those equations sometimes yield negative parameters. In that 
case the transformed beta with r = 20 (rx # 1) has seemed to give satisfactory 
fits. 

Using the transformed beta to match moments in this way would seem to 
give up the parameter uncertainty. This is not necessary, however, as the 
moments of the combined process-parameter system can be found by combining 
the process and parameter moments. In fact, 

Mj(combined) = Mj(process) Mj(parameter). 

Thus the combined moments can be used to calculate the transformed beta or 
gamma parameters. This, in fact, allows for greater freedom in selecting the 
parameter distribution moments, in that the skewness need not be strictly de- 
termined by the CV. 
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