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In practice, it was not quite this simple, in that there was
another set of A, B, and C values estimated for excess losses
simultaneously, and both sets of parameters were indexed for
inflation and for state differences in loss severity. This can be
accomplished by indexing B and C only, in that then the credi-
bilities will not change if P increases according to the index.

The (extended) Bailey-Simon method thus obviates the need for
estimating variances, and it also gives the credibility formula that
would have worked best in the past. To the extent that subtle viola-
tions of the model assumptions are operating, the resulting formula
could work better even than one with the actual variances, if they
were known. ‘

How Good Is Least Squares Credibility?
*Linearization Error

In Example 6.3, the percentage change in territory pure premium
was estimated using least squares credibility. It is often felt appropri-
ate to use this credibility for percentage changes in pure premium,
and for loss ratios, but not for pure premiums themselves by territory
or by class. One reason for this is that pure premium differences
among territories and among classes may be greater, especially in the
extremes, than would be accounted for in this theory. Since least
squares credibility relies on the first two moments, it may not be well
adapted for use with highly skewed distributions, for example. In this
section it is shown that least squares credibility can perform quite
poorly with highly skewed distributions. Taking the logs of the data
“ before applying credibility is explored as an alternative.

As discussed earlier, the function of the X;,’s that optimizes the
expected squared error in X, is the predictive expected value E(Xol
the X,’s). The best linear function in this sense is the least squares
credibility estimate.

Whenever the predictive expectation is a linear function of the
observations, it is thus the same as the credibility estimator, and sev-
eral examples of this were seen above. Jewell (1973) has shown that
this occurs when the conditional density of X given the unknown
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parameter R is a member of the linear exponential family, i.e., when
the density can be written in the form f(xiR) = exp[xp(R)
+ b( — x) + g(R)] for functions b, p, and g, as long as R is distributed as
the natural conjugate prior of f. The gamma-Poisson, inverse gamma-
gamma, and niormal-normal conjugate pairs are useful examples.

It is widely speculated that probability densities of the above
form are the only cases where the credibility estimate is the same as
the predictive expectation (e.g., see Goel (1982)). In all other cases,
the difference between these two estimates can be described as
linearization error, since it is the minimal additional error that can
arise from using a linear estimator instead of the predictive
expectation.

Many of the distributions that arise in casualty insurance prac-
tice, such as the lognormal, Weibull, Pareto, and inverse gamma are
not in the linear exponential family, and in fact quite a bit of accuracy
may be sacrificed by the use of linear estimators for variables having
these distributions, as the following examples show. Taking logs
before using credibility and then exponentiating the answer, as an
alternative to standard credibility practice when estimating such vari-
ables, will be illustrated as well.

Example 7.1

The first example will consider the lognormal distribution with
a lognormal prior in the constant exposure model. This might be a
reasonable model for claim severity, for example. The predictive mean
and credibility estimate will both be calculated and compared to each
other to determine the extent of linearization error.

The lognormal distribution can be parameterized to have two
parameters, b and c?, such that 1/f(x) = cxym2exp([In(x/b))*/2c?) and
E(X/) = biexp(j?c?/2). In this parameterization, b is the exponentiation
of the usual parameter . In particular, EX = bexp(c’/2) and VarX =
Vlexp(2c?) — exp(c?)].

The following properties of the lognormal can be derived by the
methods used in Example 2.4. If B is lognormal in (v, 4°) (the prior
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distribution), and XIB is lognormal in (B, c?) (the conditional distribu-
tion), then X is unconditionally lognormal in (v, ¢ + g% (the mixed
distribution). If n observations are made, denoted as {X}=X,,...X,
then the posterior distribution for BX;} is the lognormal in v’ and
c’q?/(c? + ng?), where In(v') = [c2n(v) + g?ZinX,]/ [c? + ng?]. The pre-
dictive distribution for XI(X;}, being the mixture of the conditional by
the posterior, is then lognormal in v’ and ¢? + ¢242/(c? + ng?). The pre-
dictive mean is then E( X{(X}}) = v'exp([c?/2 + cq2/2(c? + nq?)).
Letting z = ng?/(c? + ng?):

E(XKX}) = exp(zInX + (1 — z)In(v))exp(.5[c? + (1 — 2)q%]) (7.1)

where InX denotes the average value of the log of the observations.
Since z=n/(n + k), where k = ¢2/4?, this predictive mean can be seen
to be a constant factor M times the exponentiation of the credibility
estimate of I[nX, where the constant factor is M =
exp(.5[c? + (1 — 2)g%)).

To find the credibility estimate of X given the X/, the lognormal
moment formulas are applied to the conditional and prior distribu-
tions. The credibility is Z = n/(n + K), where

K= EVar(XIB)/ VarE(XIB) -
= E(BYexp(2c?) — exp(c?))/ Var(Bexp(c?/2))
= viexp(2q°)[exp(2c?) — exp(c?)]/ exp(c?)vlexp(24?) — exp(q?)].
This simplifies to:
K= [exp(g)]lexp(c?) — 1]/[exp(¢?) — 1] (7.2)

Table 7.1 illustrates a simulation test of the resulting credibility esti-
mate vs. the predictive mean, in order to illustrate the potential lineariza-
tion error for the lognormal. Parameter values of c2=4,v = 1,and g2 = 2
were used in this example. The ¢2 value might correspond to the loss size
distribution in a heavy tailed line. The g value provides quite a large dis-
persion among classes or risks, perhaps more than would ordinarily be
expected.

For the test, 10,000 risks were placed at each of the following per-
centiles of the prior distribution: 1, 10, 50, 75, 90, 99. Thus in this test,
the b parameter value is known for each risk, and so the different ways
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of estimating it can be tested. For each risk, 50 claims were simulated
from the lognormal severity arising from the B value at that percentile
and the selected value ¢? = 4. Then the sample mean, the credibility esti-
mator, and the predictive inéan were computed from the 50 claims. Each
of these was considered to be an estimator of the known conditional
mean E(XIB), and the absolute value and square of the estimation errors
were recorded for each risk. The table gives the averages of these esti-
mates and errors for the 10,000 risks at each percentile.

Table 7.1

Lognormal Linearization Error

Percentile of B: 1 10 50 75 990 9

B 037 163 1.00 260 6.13 268

E(XIB) 275 121 739 192 453 198

Average Estimate

Sample 276 121 741 190 453 200

Predictive Mean 382 149 790 192 423 165

Credibility 112  11.7 144 196 313 100
Average of Individual Risk Absolute Errors

Sample 31 592 356 9.03 219 971

Predictive Mean 114 369  1.66 4.02 945 46.6

Credibility 11.0 105 7.04 3.88 186 113
Average of Individual Risk Squared Errors

Sample .058 135 415 319 1,760 42,000

Predictive Mean 021 241 481 26.0 136 3,020

Credibility 120 110 578 63.8 544 18,000

To compute these estimates, K = 62 can be found using (7.2) with
c2=4, g°=2,s0 Z=150/112 = .45. Similarly, z = .96 resulted for the
credibility estimate of InX, with a K of 2 = c2/42. The constant M = exp
(.5[c? + (1 — 2)¢?)) from (7.1) is equal to 7.68; also, EX =20.1= vexp
([c* + ¢%1/2), and E(InX) = In(v) = 0. With these values, (1 — 2)EX =
11.1, so this is a lower bound for the credibility estimate
(1—-2Z)EX+ZX.
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The table shows that the average sample estimate is generally
quite good, as the sample estimate is unbiased. The error of the sam-
ple mean can be large for any particular risk, however. The predictive
mean shows up to be by far the best estimator in terms of either abso-
lute or squared errors. Thus the linearization error is quite substantial
in this case.

The sample mean is also linear in the observations, and it may
appear more favorable than the credibility estimate overall in this
example. By the expected squared error criterion, the credibility esti-
mator is better: the sample squared errors at the upper percentiles are
much larger, so the average squared error over the entire distribution
is higher than that of the credibility estimator, even though the credi-
bility errors are higher at the lower percentiles. The better perfor-
mance of the credibility estimator by this criterion does not appear to
carry over to absolute errors, or to percentage errors, however. This
raises doubt about whether the overall expected squared error is
really an appropriate criterion when heavy tailed distributions are
involved.

A possible alternative is to use least squares credibility to esti-
mate the logs of the observations. This will minimize percentage
errors when converted back to full values, and thus may be more
appropriate, even in cases when, unlike the lognormal, it does not give
the predictive mean. The next example looks at such a case.

With the distributions in the above example, an ad hoc method,
such as using limited fluctuation credibility with n; = 50, would prob-
. ably appear better than the least squares credibility estimate for most
risks, even though such a low value for full credibility would appear
strange by usual limited fluctuation standards. In some aspects of
workers’ compensation ratemaking, e.g., serious pure premiums, as
a matter of fact, such low full credibility values have been selected
over the years, based on performance of the ratemaking method.
While this has given rise to actuarial suspicion, the above gives a theo-
retical context for its applicability.
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Example 7.2

In this example, the conditional and prior from Example 2.4 are
reversed. Now X is inverse gamma in (c, Y), and Y is gamma in (r, b).
The unconditional or mixed distribution for X isthe Beta2 or general-
ized Pareto, in (r, ¢, b).

With 1 observations X, . . . ,X,,, the posterior distribution is then
also gamma, but now with parameters (v +nc, ), where a= -
[p—1+ XX~ Thus the predictive distribution is Beta2 in (r + ¢,
¢, a), and the predictive mean is a(r + nc)/(c —1).

This is to be compared to the usual credibility estimate and cred-
ibility based on the log transform. The K value can be found to be
(r+1)/(c—2) by the usual approach. To do credibility in logs,
EVar(WIY) and VarE(WY) must be found, where W = [nX. These will
rely on some lesser known facts about the gamma and inverse gamma
distributions:

1. E(Wl) = In(y) — Y(o), where ¥(c) is the digamma func-
tion, the derivative of the log of the gamma function. This is a well
tabulated function, e.g., see Abramowitz and Stegun (1965).

2. Var(Wh) = ¥'(c), the derivative of the digamma, which is
called the trigamma function and is again well tabulated. Note that
this does not depend on y.

3. Eln(Y) = In(b) +¥(")
4. Var(Iny)= ¥'(r)

From these it follows that EVar(WlY) = ¥'(c) and VarE(WIY)
= (), and so for log credibility, k ="¥'(c)/ V(). Also, EInX = In(b)
+ Y(r) — W(c). Taking z=1n /(n+ k), the log credibility estimate can

be written as Mexp[(1 — 2)EInX + (z /m)XInX;], where M is a constant
needed to make the estimate unbiased. M can be determined by com-
puting the expected value of this estimate without the M and then
setting the estimate equal to EX. It can then be found that the log
credibility estimator is:

a3 (r — D! (c — D! Mexpl(@/m)Z InXi)/
c—D(r+z- 1)!(c -1 -zn)!".
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PRI

For an example, 10,000 trials for each percentile shown were
taken for a sample of n = 25, with parameters b=100, r=0.5, and
¢ = 4.0. The results are given in Table 7.2.

Table 7.2
Inverse Gamma Linearization Error
Percentile of Y: 1 10 50 75 90 99
Y .008 .789 22.7 66.2 135 332
E(XIY) .003 .263 7.58 22.1 45.1 111
Average Estimate
Sample .003 263 7.58 22.0 45.1 110
Predictive Mean .003 267 7.67 222 45.1 108
Credibility 488 741 7.84 21.9 44.2 108
Log Credibility .003 266 7.60 22.0 45.0 110
Average of Individual Risk Absolute Errors
Sample .000 .028 817 238 4.86 119
Predictive Mean .000 .021 .608 1.75 3.54 8.63
Credibility .485 478 797 233 485 120
Log Credibility .000 .022 639 1.86 3.79 9.30
Average of Individual Risk Squared Exrors

Sample .000 .001 1.13 959 40.1 241
Predictive Mean 000 .000 594 490 19.8 115
Credibility .235 230 1.13 9.07 385 235
Log Credibility 000 .000 652 549 229 137

In this example, '¥(4)=1.25612, ¥Y(5)= — 1.96351,
17100 = 4.60517, and.so EInX=1.38554. Also ¥'(4)= .283823,
P/(5)=4.93480 so k= .0575146, and z= 25/(25 + k)= .9977.
Since K= .75, Z= 9709, ard EX=br/(c—1)=50/3 can be
computed.

For this sample, the log credibility performed almost as ‘.N'ell as
the predictive mean, and considerably better than linear credibility. In
fact, due to lower absolute errors and percentage errors, the §ample
mean may be felt to be better than the linear credibility estimator
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even though it can be shown to have a higher expected squared error
overall. This again raises doubts about how appropriate the overall
expected least squares criterion is for heavy tailed distributions.

To apply log credibility in practice, it is not necessary to use
digamma and trigamma functions. At least in the constant exposure
case, the empirical development of K can be applied to the logs of the
observations, and the resulting credibility estimators exponentiated.
This will not be in general unbiased, but a factor M can be developed
so that the credibility estimators over all risks balance to the overall
mean, simply by eliminating the off balance that would arise without

this factor.

This procedure is applicable, for example, to loss severity; or to
other instances of the equal exposure case. Before it could be applied
in the more general situation, the relationship of Var(inX,) to P,
would have to be determined, and resulting credibility formulas
worked out. For this it may be reasonable to use the simplest model
Var(InX,IR)) = s(R))? /P, in fact. For a gamma distributed variable in
(¢,b), the sum of n independent observations is gamma in (nc, b), and
the variance of the log of this sum is thus ¥ (nc). This is reasonably
well approximated by 1/nc, at least when nc is not too small. (Exer-
cise. Prove this by twice differentiating Sterling’s approximation for
the log of the gamma function.) Thus assuming that the conditional
variance of InX is approximately inversely proportional to the expo-
sure n makes sense at least in this case.

The principle of working with a transformed loss value, having a
more manageable distribution, has been applied in casualty actuarial
practice. An example, mentioned in the opening section to this chap-
ter, is the multi-split experience rating plan, first introduced in 1940
in New York. For small and medium sized risks, credibility was
applied only to losses transformed by a “primary value” function p(X).
An example in recent use is: '

pX)=X ' if X < $2000
p(x) =10,000X /(X + 8000) if X > $2000
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The primary value is always less than $10,000, which effectively
limits the tail of the distribution.

Expected Squared Error of Credibility Estimate

Another approach to the question, “How good is least squares
credibility?” is to compute the expected squared error of the estimate,
either conditional on the parameters R, or overall. First the conditional
expected squared error is calculated. Through straightforward alge-
braic manipulation of probabilities, in the equal exposure case it is
possible to show that, for any weight Z:

E((ZX; + (1 —Z)ym — E(X,/R)AR} =

Z2Var(XR)/n + (1 — ZY[m — E(X,IR)]? (7.3a) -
and thus, taking the expected value of this, the overall expected
squared error is: '

E[ZX; + (1 — Z)m — E(X,/R))? =

ZZEVar(XilR;)/n + (1 — Z)*VarE(X,JR;) =

2% /n+ (1 — Z)#? (7.3b)
(Minimizing 7.3b with respect to Z gives Z = n/(n + K), as it should.)

Taking Z =1 gives the squared error for the sample mean. For
"any particular class, this may be greater or smaller than the credibility
squared error, depending on how close that class really is to the over-
all mean, as (7.3a) shows. For Example 7.1, the conditional expected
squared errors are given below for the credibility value Z = .45, the
sample estimate Z = 1, and an arbitrary choice of Z = .90.

Conditional Expected Squared Errors

Percentile of B: 1 10 25 50 75 90 99

B 037 163 385 1.00 2.60 6.13 26.8
E(XIB) 275 121 2.85 739 19.2 453 . 198
Z=1 08 16 87 59 395 2,198 42,000
Z=29 4 48 10 49 321 1,789 34,400
Z=45 120 110 91 60 79 942 17,800

The overall expected squared errors from (7.3b) for these Z's are
3200, 2600, and 1400, respectively. This again illustrates that the
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expecfed squared error can be dominated by the large values of the

arameter, which is not necessarily the way an estimation process
should be evaluated. The last row can be compared to the simulated
values from Table 7.1. :

Even though the overall average squared error is lower for the
credibility estimator, the individual (conditional) expected squared
error can be much lower for the sample mean at some percentiles.
This occurs even in the case of normal distributions, as Efron and
Morris (1972) point out. An adaptation they discuss is placing a
selected limit on how much the credibility estimator can differ from
the sample value. This “limited translation estimator” effectively
gives additional credibility to the observations furthest from the
grand mean.

Since non-extreme risks can sometimes produce extreme obser-
vations, this procedure increases the overall expected squared error,
but reduces the individual squared errors at the extremes, where they
are often largest. Efron and Morris show how to compute the increase
in overall expected squared error and the decrease in individual
squared error when the limit is a constant difference from the sample
value. This makes a lot of sense in their model, as all risks have the
same conditional variance. For heavy tailed distributions, a percent-
age limit may be worthy of consideration, since the coefficient of vari-
ation is more likely to be constant across risks, as in the above
examples.

For example, in a classification ratemaking context, workers’
compensation class rates can range from 10 cents to $100 per $100 of
payroll. Allowing a 10% error would seem more equitable than allow-
ing a fixed $5 error in such a case.

Further Topics

A number of different extensions of the above methods have
been worked out by various authors. A very limited selection of those
with applications in casualty insurance is presented in this section, in
the form of an annotated bibliography. In general, references noted in
earlier sections are not included here.
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Mahler, Howard C. 1986, An actuarial note on credibility param-
eters PCAS 73.

The least squares and limited fluctuation formulas for Z can be
matched fairly closely with the right choice of parameters. Mahler
shows that taking 7 = 8K makes the credibilities close and the credi-
bility estimators even closer.

Klugman, Stuart. 1987 Credibility for classification ratemaking
via the hierarchical normal linear model, PCAS 74.

A Bayesian approach to estimating s? and  in the normal-normal
model is presented, using both diffuse and proper priors. The choice
of prior turns out to have little effect on the outcome. In a test using
live insurance data, improved results are obtained. Although numeri-
cal integration is needed, error estimates are provided which incorpo-
rate the uncertainty about s? and #2.

Venter, Gary G. 1986, Classical partial credibility with applica-
tion to trend PCAS 73.

The limited fluctuation paradigm is extended to trend estimates.
A trend projection is given full credibility if the p-confidence interval
around it has radius no greater than 100k% of the projected value.
This radius is a function of the goodness of fit of the trend line.” -

Hachemeister, Charles A. 1975 Credibility for regression models
with application to trend in Credibility—Theory and Applications,
Kahn, ed. New York: Academic Press. '

Least squares credibility is applied to regression models in a very
general setting. In a particular application, trend lines for several
states are credibility weighted against each other, with number of
claims used as the basis of credibility.

Miller, Robert B., and Hickman, James C. 1975 Insurance credi-
bility theory and Bayesian estimation in Credibility—Theory and
Applications, Kahn, ed. New York: Academic Press.

Least squares credibility and Bayesian analysis are applied to the
collective risk model for frequency, severity, and total claims.
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Heckman, Philip. 1980 Credibility and solvency in Pricing prop-
erty and casualty insurance products, New York: Casualty Actuarial
Society.

A hierarchical least squares credibility scheme is presented in
which risk means are weighted against class means, which in turn are
weighted against the overall mean. The two levels of credibility are
computed in an integrated manner, but these turn out to be separable
steps.

DuMouchel, William H. 1983 The Massachusetts automobile
insurance classification scheme The Statistician: 32.

Credibility is applied in a two dimensional setting. Class rate rel-
ativities by territory are initially modeled as a statewide class relativ-
ity plus the product of a territory relativity with a second statewide
class relativity. The deviations of the individual cell relativities from
this model are assumed normal, which leads to a credibility weighting
between the sample cell relativity and the model expectation.

Venter, Gary G. 1985 Structured credibility in applications—
hierarchical, multi-dimensional and multivariate models ARCH:2.

The hierarchical model described by Heckman is applied to cal-
culating workers’ compensation loss severity by class within hazard
group, and two other models are described. A multivariate model is
used to estimate several correlated quantities by class, e.g., frequency
for different injury types. A two-dimensional model is developed to
estimate class by state relativities by weighting the individual class-
state cell simultaneously against the other classes and other states,
without assuming any particular underlying additive or multiplicative
structure between state and class.

de Jong, Piet and Zehnwirth, Ben 1983a Credibility and the
Kalman filter,” Insurance Mathematics and Economics 2. .

The Kalman filter is a generalized model which is shown to
include most of the known credibility models as special cases, while
also allowing for changes in structural parameters over time.
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de Jong, Piet and Zehnwirth, Ben 1983 Claims reserviﬂg, state-
Space models and the Kalman filter Journal of the Institute of Actuaries:
110. '

Accident year losg payout timing can be modeled by various
curves, such as exponential decay, generalizations of the inverse

Robbin, Ira. 1986 A Bayesian credibility formula for IBNR counts
PCAS 73.

Credibility weights are specified for three estimators of thijs IBNR:
(a) the observed claims to date times a development factor

(b) the ultimate claims €xpected originally (prior to claims emer-
gence), less the observed claims to date,

(¢) the number of claims originally expected to emerge after this
date.

To derive the credibility weights, the variance of M can be broken
down into EVar(Miu) and VarE(Mlu). The second component is further
split out by defining 1 and q (independent functions of the parameters
u) so that EMiu) = n(1 — 9). The interpretation is that 5 is the condi-
tional expected ultimate number of claims, and q is the expected propor-
tion of IBNR claims at this date, given u.

Since for. independent X and Y, VarXy)= E(X)Vary + (EY)?
VarX, it follows that VarE(Mu) = E(n?)Var(1 — 9) +[EQ1 — 9)Var(n).
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Thus three components of VarM are identified, and the three estima-
tors above end up being weighted in proportion to these three .
components.

Estimator (a) has weight proportional to Var(n). If the ultimate
number of claims is not well known, Var(n) is high and a large weight
is given to the developed observed claims. The weight on (b) is pro-
portional to Var(1 — 9). If the development pattern is poorly known,
(a) and (c) are less reliable. Finally, if M itself is highly random, little -
weight can be given to it. Thus if EVar(Miu) is higher, the weight on
(c) increases. '

Conclusion

Credibility as a topic has been with the CAS since the first
volume of the Proceedings, and it is by no means a finished one, as
witnessed by the flurry of papers recently. The best form for credibil-
ity estimators has yet to be determined for many applications. It is not
unreasonable to expect that the final volume of the PCAS, whenever
it is published, will also contain a paper addressing credibility theory.

Postlogue
by Charles C. Hewitt, Jr.

Number of Observations

Sometime in the 1920s, Sinclair Lewis, the author, was to receive an
award as a distinguished alumnus of Yale University. In accepting the
award, Lewis took the occasion to assert his known atheism.

“I do not believe there is a God,” said Lewis (in substance). “If,
in fact, there is one, let him strike me down here and now!” And,
of course, nothing happened. Howevet, several days later the noted
newspaper columist, Arthur Brisbane, took Lewis to task.

“Lewis, you poor misguided fool,” wrote Brisbane (in substance).
“You remind me of the ants who lived along the right-of-way of the
Atchison, Topeka, and Santa Fe Railroad. This colony of ants
depended for its existence upon the crumbs thrown from the dining
cars of the railroad trains as they passed by.
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“It came to pass that the ant colony fell upon hard times because,
through chance, no crumbs were thrown out near its particular place
along the right-of-way. The situation became desperate and the col-
ony decided to hold a meeting. It was suggested that they all pray to
the president of the Atchison, Topeka, and Santa Fe Railroad to send

~more dining cars so that crumbs would be thrown off in their area.

“So they did pray and the following day they waited, but no
crumbs were thrown off where they lived. So the ants concluded that
there was no such person as the president of the Atchison, Topeka, and
Santa Fe Railroad.”

Variance of the Processes

Four boys decided to play “hooky” from school, because they knew
there was to be a test that morning. About 11 A.M. their consciences got
the better of them and they decided to show up at school after all. Upon
reaching their classroom, they explained to the teacher that they had been
on their way to school in a car, but the car had a flat tire. This made them
late because they had to have the flat tire fixed.

“No problem!”, said the teacher. “Just come back here during the
lunch hour and I'll give you a make-up test.” At lunch time, when they
reported back to the classroom, the teacher instructed the four boys to take
seats in the four corners of the room.

“Now,” said the teacher, “'there’s only one question on this make-up
test. Which tire was flat?”’

Variance of the Hypotheses
Television interviewer: “Do you believe in miracles?”
Guest: “Of course!” |
Television interviewer: “Have you ever seen a miracle?”’
Guest: “No.” '

Television interviewer: “Do you know anyone who has actually
seen a miracle?”’

Guest: “No, but that doesn’t prove anything!”
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Table of Distributions

Preliminaries
Gamma function: I{r) = f Yyl ¥dy = (r — 1)! The partial integral can be eval-
uated by a series: 0

Incomplete Gamma function: I{r;x) = J y"le"ydy +~Ir) = Z H
) . 1)' o rtk
Beta function: _ I'mI) _]’. 14t _T" iy — 1)1y, wh ot
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Incomplete Beta function: /3 (7,;x) (! ui(u — 1ydu = B (r,8) J ato B(r.s)

® i1
_x ] 5 x : e
ﬁ(r 3T E r+1 H 1 _E:|— F( ) where F is the distribution func-
tion of the F dlstnbutlon w1th 2r and 2s degrees of freedom. Thus either the series
expansion or a package with the F-distribution can be used to compute the incom-
plete beta function. Note that the incomplete beta and gamma functions are both
increasing functions, with range [0,1), and thus can be used as distributions.

When possible, the distributions below are parameterized with a multiplicative scale
parameter b, so that E(X¥) « b%. This is usually more convenient for applications,
although the parameterizations given in Hogg and Klugman (1984) are easier to esti-
mate by maximum likelihood. After estimation they can be readily translated to the
forms below, however. In the following, F is the distribution function, and f the
density.

1. Transformed Beta distribution (r,s,a,b)
o s __ (a/b)x/byr
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1a. Burr Distribution (s,a,b,) (r = 1)
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The Pareto is given by r =1, Fx) =1—(1 + bi)“‘-

1c. Generalized Loglogistic (r,4,b) (s = 1) (also called inverse Burr)
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F@x) = (;..*4_ b ] feoy= (TW

¥ y
br—1+0(—3)
E(X’) = r (r—l)l;)( “), —ar<y<a.

The special case 2 = 1 is the inverse Pareto, which only has moments —r <y <1,
and thus no mean!

2. Transformed Gamma (r,4,b)

Fx) = Irix/b)); f) = ALy te e
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PIr+3
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2a. Weibull (a,b) (r =1)
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2b. Gamma (r,b) (a = 1)
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3a. Inverse Weibull (log-extreme-value) (@ab)s=1)

F(x)= e—t/b” s

a

f(x) = (a/b)(x/b) " 1g-t/v"
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For a =1, the inverse exponential has only moments y < 1.

3b. Inverse Gamma (s,b) (a = 1)

et e b (U™
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.4. Lognormal (b,c?) '
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Note that all moments exist. McDonald (1984) shows that the lognormal is a limiting
case of the transformed beta, transformed gamma, and inverse transformed gamma.
(N is the standard normal distribution function.)
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