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DISCUSSION OF PAPER PUBLISHED IN VOLUME LXXV 

MINIMUM BIAS .WITH GENERALIZED LINEAR MODELS 

ROBERT L. BROWN 

DISCUSSION BY GARY G. VENTER 

1. INTRODUCTION 

This paper is a welcome addition to CAS literature on cross-classi- 
fication ratemaking. This review considers it in the context of other 
recent work outside the PCAS. Despite the title of the paper, the con- 
nection with general linear models does not seem to be the primary 
emphasis of the paper, and some skepticism about this aspect is voiced 
below. 

In his paper, Robert Brown provides additional insight into minimum 
bias procedures as well as an introduction to generalized linear models. 
The cross-classification framework is that provided by Bailey [l]. For 
data with IZ rows and p columns, the cell in the ith row and jth column 
has nij exposure units, e.g., premium, which generate data, e.g., a loss 
ratio, of rij = Lolnij. This is modeled by n row parameters xi . . . xn 
and p column parameters yl . . . yp. 

Bailey models the ijth cell as an arithmetic function of xi and yj; for 
example, the multiplicative model uses the function f(xi,yj) = Xiyj to 
estimate future observations of rij. He then, in effect, applies the principle 
of balance; he requires that the row and column totals from the model 
balance to those from the data. In formulas, for each row i: 

E nijrij = X n;f(&,yj), 

i j 

and for each column j: 

7 Qirij = 7 nif(xi.Yj). 
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There are tz + p such equations, which are enough to solve for all the 
X’S and y’s, and as Bailey notes, the solutions can be obtained iteratively. 
In fact, usually the equations arc of the form 

X, = s,(J,, . . ,y,,) and y, = I2,(s,, ,x,,) 

By starting with reasonable initial values for the X’S and J’S, the g and 
11 functions can be used to iteratively refine these values until stability 
is achieved. This is called fixed point iteration, and its convergence 
properties can be found in numerical analysis texts. Thus an estimation 
method is specified by giving its system of equations. Brown follows 
this convention, as does this review. A detail not usually mentioned is 
that only n + p - 1 independent equations are specified in such systems. 
The result of this is that one of the n + p parameters can be set arbitrarily, 
e.g., to 1. In a multiplicative model, for example, multiplying the X’S 
by a factor and dividing the y’s by the same factor will not affect the 
cell estimates, so one less parameter is really needed. 

As will be discussed more fully below, at least four types of alter- 
natives to Bailey’s method have been devclopcd. mostly outside the CAS 
Proceedings or not recognized as relating to the minimum bias procedure. 
These are: (I) alternatives to the balance principle: (2) more general 
arithmetic functions; (3) using the arithmetic function as a base, but 
allowing individual cells to vary from that, based on their own data; and 
(4) estimating individual cells without postulating an arithmetic relation- 
ship between rows and columns. Brown’s paper addresses primarily the 
first area. This review points out some remaining difficulties, and briefly 
recaps how they have been approached in other studies, using the above 
alternatives. The connection with general linear models is also discussed. 

2. ALTERNATIVES TO BAL.ANCf: f’RfN(‘fP1.E 

Brown provides several alternatives to the principle of balance, al- 
though he does not give explicit reasons for abandoning it. One such 
reason may be that it assigns full credibility to each row and column in 
total, which may not be appropriate. A possible response, however, 
would be to credibility-adjust the row and column totals before applying 
the balance principle. Another response might be to tind models that 
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automatically quantify the likely deviations from the cell estimates. 
However, this could probably be done without discarding the balance 
principle. Perhaps the basic motivation for abandoning balance is that 
the principle, while appealing, is not self evident, and thus more fun- 
damental principles should be sought. 

In any case, the first alternative Brown presents is to model the 
numerator of rji, i.e., Lij, as a random draw from a distribution with 
mean @(x;,J!,). Given a distribution and an arithmetic function f, max- 
imum likelihood estimation can be used to solve for all the parameters 
from the observations. Several distributions are illustrated, and for each 
a system of n + p equations in it + p unknowns is derived. 

For instance, assuming a normal distribution with a multiplicative 
model, i.e., that the L;j are normally distributed with mean n,,LX;yj and 
variance u2, gives the following equation for each xi: 

.r;C n$ = 2 tZ$r,jyj, 

i i 
and similarly for each 4;. Interestingly, these equations do not involve 
the o2 parameter of the normal distribution. 

For the multiplicative model with a Poisson distribution assumption, 
Brown finds that the system of equations for Bailey’s balanced multipli- 
cative model is reproduced. This result was also shown by van Eeghen, 
Greup, and Nijssen [8]. While it shows that the Poisson distribution 
satisfies the principle of balance, it does not give much support for using 
a balanced model, in that the cell data is not usually Poisson distributed. 
In fact, this might be a reason for dropping the balance requirement, 
since most distributions will not reproduce it. Thus, the equivalence of 
the Poisson and Bailey models, rather than supporting their use, suggest 
that alternatives might be more appropriate. 

For the exponential distribution, the following simple equations are 
produced: 
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This reviewer has found that the same equations hold for the gamma 
model, which adds a parameter to the exponential. Like the a2 of the 
Normal distribution, this parameter does not enter the equations for the 
x’s and y’s. 

The most logical distribution for the multiplicative model would 
probably be the lognormal, because that results when the errors are also 
due to multiplicative effects. The estimating equations can be derived 
by using the additive normal model with the logs of the data. 

The normal distribution models Brown use5 are unusual in that each 
cell has the same variance a2 for L,,. It is hard to see how this could 
occur from cells with different exposures. For instance, if each exposure 
unit has the same variance TV, then the cell variance would be ni;r2 due 
to the additivity of independent exposures, that is, it would not be 
constant but would be proportional to n,,. Or, if there are additional gaps 
between the arithmetic function and the exposure unit means, which 
average to zero over all cells, i.e.. E(L,,) = .rix, + g,,. with E( fiJ . ..) = 0, 
then the variance of this gap, Var(g,i), would be added to n;;r to give 
the variance of Lo. Only if the variance of the gap, i.e., error from the 
arithmetic function assumption, were large compared to the risk variance 
ny? would the constant variance assumption be a reasonable approxi- 
mation. However, in this case the use of that arithmetic function would 
be questionable. 

It is not difficult to carry out the estimation assuming a variance of 
n,,d rather than a7 for L,,i. For instance, for the multiplicative model, 
the .r equations become: 

Xi 2 n;jJ!f = I: n;jri,?ii, 
J J 

which are in fact the equations Brown derived for the least squares 
multiplicative model. 

The latter is another alternative Brown presents, namely minimizing 
the weighted least squares difference between the data and the model. 
For instance, for the multiplicative model, minimize X,-n,J(r,J - SXi+J)2. 

This was also advocated by Sant [7], and, under the label “analysis 
of variance” approach, by Chamberlain [2] and others. The least squares 
approach has the advantage of not assuming a distributional form, al- 
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though it does still assume a particular arithmetic function of the param- 
eters xi and yj. If the different cell means themselves come from a highly 
skewed distribution, e.g., display very large percentage differences 
among the cells, then minimizing the sum of squared errors could allow 
significant percentage errors for the low mean cells. Thus least squares 
works reasonably well only for certain types of distributions. 

It is generally advisable when doing weighted least squares to use 
weights which are inversely proportional to the cell variances. The 
weights Brown uses are thus consistent with rij having variance inversely 
proportional to n;j, which seems appropriate. However, the constant 
variance model for Lij would lead to weights of ni, which, for the least 
squares model, would produce the system of equations Brown gave for 
the normal model. 

3. GENERALIZATIONS OF ARITHMETIC FUNCTIONS 

Although not mentioned in the paper, both of Brown’s alternatives, 
as well as Bailey’s original method, can be generalized to use other 
arithmetic functions of the row and column parameters. For example, 
the function x;yj + Zj has sometimes been used to good effect in class- 
by-territory ratemaking. This is a combination of additive and multipli- 
cative effects that uses n + 2p parameters. Maximum likelihood esti- 
mation with the constant variance normal distribution, for instance, 
provides a set of n + 21, equations which have the forms: 

x; x n&j = 2 &(r;j - Zj)y,, 

i i 

Zj C flz = 2 ns(rij - Xiyj). 

The squares on the exposures would be dropped under the assumption 
of the variance of LjJ proportional to ~?+r . The combined additive- 
multiplicative function is sometimes appropriate when the high rated 
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classes in the high rated territories. for example, get too much charge 
from a multiplicative mode1 and not enough from an additive one. Other 
arithmetic functions are possible, also, such as .r,‘$ ‘, etc., although the 
term “arithmetic” might be a misnomer for such functions. There is a 
wide variety of possibilities of this type which have been largely unex- 
plored. An important exception is Harrington [4]. who applies an additive 
model after applying the Box-Cox transformation to the data. This trans- 
formation is rt,j = (rQ -- 1)/c. This is really a common generalization of 
both the additive ((’ = 1) and multiplicative models, in that the limit of 
rl; as c goes to zero is ln(r,,). giving an additive log model. By searching 
for the best fitting c* parameter, improved fits can be produced. 

4. GI,IM DISCUSSION 

The GLIM section of Brown’s paper is somewhat difficult to follow, 
but he does recommend background material. Even so, it will not be 
clear to those without experience with linear models how GLIM as 
defined might apply to the cross-classification problem. The following 
example illustrates how this can be done for the multiplicative mode1 
with Normal constant variance errors. 

If L,, denotes the numerator II,,T,, of I-,,. and p,., its expected value, 
the Normal density can be put in the GLIM form: 

Since the GLIM definition uses variables .I- and y, let the row and column 
effects formerly denoted by .t and J now be denoted by \%’ and 2 instead. 
The observed vector Y to be modeled is the set of L,, all strung out in a 
single vector, i.e., if k = (i - 1)~ + j, then .vI = L,,. There are m = 
np of these VL’S. The coefticicnts p,, to be estimated will be interpreted 
as the ln(\tl,j’s and ln(z,)‘s listed as a single vector (z’s after all the W’S), 
followed by a constant term which should turn out to be 1. Thus, there 
are q = n + p + 1 of these p,,‘s. The explanatory vector, .u, for h < 
q is a list of m elements .Q/, that are all O’s except for I’s which occur 
when yk comes from either a row or a column corresponding to Ph. That 
is for k = (i - 1)p + .j, XX/, = 1 only for h = i and h = FI + j. The last 
vector .T<, , consists of the logs of all the exposures 11,~. 
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With these definitions, let nk = C;I=ix&,. If we defined the x’s 
right, then /zk = ln(w;) + ln(zj) + ln(n,,j) = ln(bij) = ln(lQ. Therefore 
the link function g is the log function. From the form of the density 
function, it can be seen, in Brown’s notation, that the dispersion param- 
eter $ is (T’, a($) = $, and c@,+) = -.5[(v2/$) + ln(2n$)]. Also, 
0,. = l.~k, and b(8) = SO’. 

Thus, this GLIM model is just the original Normal model with 
constant variance, assuming that maximum likelihood is used to estimate 
the GLIM parameters. For some reason, the constant variance assumption 
seems to be inherent in the GLIM models, although it is not necessary 
when using regular maximum likelihood methods outside of GLIM. For 
this application, then, GLIM seems to require a fair amount of work to 
properly arrange the data, with benefits that are unclear. 

From the deviances shown in the paper for I2 models, as well as 
their apparent reliance on density functions, it would appear that devi- 
ances cannot be compared across distributions to determine the best 
fitting model. They probably can be compared to evaluate link functions 
for one distribution. 

5. ALTERNATIVES TO ARITHMETIC FUNCTIONS 

Another criticism of minimum bias methods has been the strict reli- 
ance on the arithmetic function. Just because data is organized in rows 
and columns does not imply that there is such an arithmetic relationship. 
For instance, if loggers have 20% more injuries than cab drivers nation- 
wide, can we expect this will hold true in New York? If office workers 
have a 90% lower work related accident frequency than workers in 
general, will this be the case in lower Manhattan? The multiplicative 
models assume such relationships will hold, and the additive models are 
based on similar assumptions. In some lines of insurance, it is felt that 
any arithmetic function of row and column averages can adequately 
model individual cell results. 

At least two methods have been developed in response to this criti- 
cism: allowing individual cells to vary from the arithmetic function, or 
estimating individual cells without using an arithmetic function, e.g., by 
credibility methods. 
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The first method was used in the 198 I Massachusetts auto rate 
hearings, where the calculated relativity was credibility weighted with 
the cell data r,j. Thus, cells with enough credibility could be based 
largely upon their own experience. As described in DuMouchel [3], the 
arithmetic function f was the combined additive-multiplicative function, 
and the credibility for cell ij was given by: 

ni, z;, = - 
flij + Kf 

Here Kj is the ratio of two variance components s:/t2, where .r,’ is the 
within-cell variance scalar over time, and 8 is the average variance of 
true cell means from their calculated relativities. More precisely, for 
time period t, rlj, has mean l.~;, and variance s:/Pz,,, and p+,, has mean 
f(x;,yl,zj) and variance t2. If there are c time periods in the data, ST is 
estimated by: 

$ = C fli,(rij, - riJ)‘ln(C - I). 
i, I 

DuMouchel gives a somewhat intricate method of estimating t2. A Biihl- 
mann-Straub type estimation would also be possible. For this, let 

Then it can be shown that 

E( Iv) = nc c s,’ + t2 c n,J,. 
i i,J. I 

This means that W is an unbiased estimator of the right hand side, and 
can thus be used to estimate t2. That is, 

t2 = W - nc x 3ff 
L 

+ 2 nor. 
J I i.j.r 

If the estimate is negative, it should be set to zero, which would give 
full credibility to the model and none to the cell data. In the Massachu- 
setts case, DuMouchel found that the combined additive-multiplicative 
model fit the data very well, so that the credibilities given individual cell 
data were low. 
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Other approaches to giving credibility to individual cell variation 
from the arithmetic function can be used. An example is found in 
Weisberg, Tomberlin, and Chatterjee [lo], who use similar model as- 
sumptions to those of DuMouchel, but just with pure additive or multi- 
plicative functionsf. They use a different, possibly more general, statis- 
ical method to estimate the credibilities. 

Another alternative is to incorporate so-called interaction effects, 
which are essentially additional parameters for specific cells. This was 
suggested by Chamberlain [2], who showed how to measure the signif- 
icance of such terms. Jee [6], who summarizes and tests many of the 
above methods, added all individual cell variables that improved the F 
statistic at a 15% significance level, and found that this improved the 
predictive accuracy of the additive, multiplicative, and Box-Cox models. 

The credibility only method, not using any arithmetic function, is 
illustrated by the national relativity approach often used in workers 
compensation, as described by Harwayne [5]. The indicated percentage 
change in non-serious pure premiums for the ith class in industry group 
1 in state j, for example, is calculated by a variant of the following. Let 
X; be the indicated change for class i countrywide, and let yj be the 
indicated change for industry group 1 in state j, with r;j the indicated 
change based on the cell data alone. If the expected number of claims 
for the 0th cell is at least 300, rij receives full credibility. Otherwise, 
the credibility it receives, z;j, is the ratio of expected claims to 300, 
raised to the two-thirds power. The credibility given to xi is calculated 
by essentially the same rule, but it is limited to (1 - zij) + 2. The 
balance of the credibility goes to yj. In formulas, the estimate for the ij 
cell is: 

i;j = Zijrij + Z&Xi + Zjyj, 

where zij and zi are calculated by the rule (expected claims/300)2’3, where 
the expected claims are for the class in the state or the class countrywide, 
as appropriate. Although the estimate uses the row and column averages, 
there is no mathematical relationship postulated between the cell and the 
totals for the row and column it is in. The x’s and y’s in the previous 
models were parameters to be estimated from the data, presumably with 
some estimation error, while here they are statistics calculated exactly. 



The credibilities above may work well in practice, but they could be 
criticized as being ad hoc. A least squares credibility type approach is 
given in Venter [9]. The estimate for the ,qth row and hth column for a 
future time period is a linear sum of the observations for all the cells 
available, i.e., 

where the Z’S are the weights in the linear function, and y is the constant 
term. These are found by minimizing the expected squared error E(F,h - 
rghO)‘, where rKlr(l is a future observation of the cell. Thus the credibility 
estimator is the linear function of all the cell data that minimizes the 
expected squared error between the estimate and a future observation. 
This is the standard least squares credibility, applied to the cross-clas- 
sification problem. As is often the case with credibility, it will probably 
work better with indicated changes than with pure premium itself. 

To express the resulting weights z,, more compactly, introduce the 
notation Stj = 1 if i = j and 6,, = 0 otherwise. The weights are derived 
as functions of four variance components: u2 is the variance between 
row means, v* is the variance between column means, W’ is the variance 
of a cell mean from row-column additivity, and .Y’ is the average relative 
variance of the cells from their means over time. Also, m is the overall 
rnean of all cells. More precisely, the assumption is: 

This holds for both additive and multiplicative models, and many others 
as well. The weights z are expressed in terms of ratios of the variance 
components. K, J, and L are the ratios of s2 to l?, r2, and HI*, respec- 
tively. Using a dot in a subscript to denote summation over that subscript, 
the weights are: 

q = m(1 - z..), and 

1 1 1 
L KJ 

, where - = - + L . 
Wij r1t.j 
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This requires the summed row and column weights z;. and z,j, which can 
be found from the system of n + p linear equations below, one for each 
row u and column b: 

Z.h [I + y] = f [Wg, - 7 WjbZf.1 + S)jh [y + y] 

As these equations are linear, they can be solved by matrix methods, 
although iteration may also work well. The resulting weights differ from 
credibilities in that they are not necessarily between zero and one, 
although they are derived in the same manner as credibility weights in 
the single dimension case. 

A method for estimating the required variance components is to 
compute the four sums of squared differences below: 

D1 = I: nijt(rijt - r;,)* , 
i..i.r 

02 = C nijr(r,y, - xi)* , 
i.j.t 

03 = 2 n;j,(rij, - yj)* , and 
i.j.t 

04 = 2 no,(r;j, - th)* . 
id, I 

Using their expected values below, these can be used to estimate s2, J, 
K, and L. 
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E(Dl) = hp(c - l), 

E(D2) = .? n(pc - 1) + 
1 ~ (n - c n;. - n, )-I , 

J+L 

Brown’s paper is a valuable addition to the Proceedings, particularly 
the least squares and maximum likelihood methods. Further empirical 
studies on how well all of the above models work would be a good area 
for future research. Both the goodness of fit and accuracy of prediction 
should be tested, and any distributional assumptions should be reviewed 
through an analysis of the residuals. 
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