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 Abstract 

Constraints imposed on premium calculation principles are studied under one 

aspect of competitive market theory: the impossibility of systematic arbitrage.  

Principles based on second moments or utility theory are shown to lead to 

arbitrage possibilities, while some other principles do not. 
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 1. Introduction 

Insurers are in business to make a profit, and risk theory has shown that a profit 

margin is in fact required by prudent insurers.  How to build into different 

insureds' premiums margins which rightly reflect relative riskiness is the topic of 

Premium Calculation Principles.  For instance, the expected value principle adds a 

constant percentage load to each contract, while the standard deviation and 

variance principles incorporate loads proportional to the second central moment, 

or its square root. 
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In this paper it is hypothesized that at any one time there is a market premium 

calculation principle operant, and that market forces require its use by all insurers 

and reinsurers, wittingly or not.  It is further assumed that a market is available for 

any risk priced according to this principle.  One aspect of competitive market 

theory, namely that arbitrage profit possibilities are quickly extinguished by 

market competition, will then be used to place constraints on what this market 

premium calculation principle could be.  Essentially, principles will be ruled out 

by showing how a portfolio of direct, assumed, and ceded policies could be 

assembled to create an arbitrage profit if that principle were the market principle.  

A class of premium principles consistent with no arbitrage will be identified. 

 

Results using the theory of arbitrage free markets to price financial assets were 

given by Harrison and Kreps (1979).  Merton (1973) showed how options can be 

priced through this approach.  Generally the theory is carried out assuming that 

transaction costs will have minimal effects.  This will also be assumed below, and 

so the results are strictly applicable only under this assumption.  However, some 

consideration as to the possible impacts of non-negligible transaction costs are 

addressed. 

 2. Constraints on Premium Principles 

2.1 Empirical Constraint 
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First, an empirical observed constraint will be employed: a premium calculation 

principle should produce a higher load, relative to expected losses, for an excess of 

loss cover than for a primary cover on the same risks.  This constraint thus 

automatically rules out an expected value load.  Further observational evidence on 

relative premiums for excess of loss covers by layer will be proposed below as tests 

of remaining principles.  

 

2.2 Arbitrage Constraints 

The first constraint imposed by arbitrage considerations is additivity for 

independent risks.  This is illustrated by an example.  Loss experience for a group 

of 100 truck drivers who band together to buy insurance will be relatively more 

predictable than for one of the truckers alone, i.e., probable deviations from 

expected results will be smaller.  Because of the greater uncertainty, an insurer may 

want to give a single trucker a proportionally larger load than the 100 together.   

 

If this happens as a general market practice, however, a reinsurance arbitrage 

possibility is created.  Reinsurers could assume the liability on the single truckers 

for a lower risk premium than the insurers charged, guaranteeing those insurers a 

risk free profit, and then cede groups of truckers for a still lower premium that is 

nonetheless higher than the market would charge for such a group, thereby 

achieving a risk free profit themselves and an above market premium for their 
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retrocessionaires. 

 

In general, the possibility of such packaging of exposures shows that a market 

without arbitrage must charge additive premiums for independent risks.  This 

constraint rules out the standard deviation load as a market pricing principle.  The 

standard deviation of risk experience would be 10 times as great for the 100 

truckers than for one alone, giving them one-tenth the proportional load of a single 

trucker.  Thus 90% of the load for individual truckers in this example would be 

available for arbitrage profits. 

 

The profit available from any such reinsurance arbitrage would be reduced by 

transaction costs.  However, given the automatic facilities available in the 

reinsurance market, such costs are likely to be small compared to the 90% of profit 

available to the cedents at no risk.  The market could in fact sustain a charge to the 

small risks equal to their share of these transaction costs, in addition to a load 

proportional by risk size to the large risks' load.  It is doubtful, however, that this 

could produce a standard deviation based load.   

 

The second constraint is additivity for non-independent risks.  Again reasoning by 

example, consider a retired couple who own two mobile homes in the same trailer 

park in Oklahoma and who want to purchase homeowners insurance.  When the 
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wind comes sweeping down the plain, both homes stand a chance of being 

damaged.  An insurer may thus feel exposed to more than twice the dollar 

variability in results insuring both than insuring just one, and may thus want more 

than twice the single home premium for the two. 

 

But the market cannot charge a two trailer surcharge, because the couple could just 

buy separate policies.  Alternatively, the insurer could cede them separately to two 

reinsurers.  Either alternative illustrates the requirement that market premiums be 

additive for non-independent risks, and thus rules out the variance principle.  

Otherwise, de-packaging of exposures could create arbitrage profits.  The de-

packaging transaction cost to the original insured could be quite small, in that two 

policies could probably be obtained in one visit to a broker. 

 

The additivity requirement can also be illustrated in the realm of excess 

reinsurance.  Layering a risk reduces the variance, as the sum of the variances of 

the layers is less than the variance of the whole.  The covariances are positive and 

they disappear in the layering process.  If there is a price benefit to this layering, it 

must be passed on to the original insureds.  Otherwise, if the total price is greater 

than the sum of the layer prices, arbitrage possibilities are created.  For instance 

,since we are assuming that markets exist, the insureds could buy primary and 

excess coverage separately, and get the price benefit for minimal transaction costs. 
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 3. Utility Principles 

The above constraints together also rule out premiums calculated as the certainty 

equivalent from a utility function, as will be shown next. 

 

If u(s) is the utility of the current surplus, the certainty equivalent of a portfolio of 

risks with uncertain losses X is that p which gives u(s)=E[u(s+p-X)].  That is, it is 

the constant amount which makes one with utility function u indifferent between 

taking both the premium and the portfolio of risks or taking neither. 

 

A popular example is exponential utility, e.g., u(s)=1-exp(-s/a).  It is not difficult to 

show that p=alnE[exp(X/a)].  It follows readily from this that the certainty 

equivalent of a portfolio of independent risks is the sum of the certainty 

equivalents of the risks in the portfolio.  Borch (1968) showed that additivity for 

independent risks holds only for the linear and exponential utility functions.  Thus 

additivity for independent risks rules out any others. 

 

For correlated risks X and Y, however, E[exp(X/a)exp(Y/a)] is not the same as 

E[exp(X/a)]E[exp(Y/a)], due to covariance, and so additivity will fail.  Thus 

additivity for non-independent risks rules out exponential utility.  Linear utility is 

a special case of the expected value principle, and so is ruled out by empirical 
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constraints. 

 

 

 

 4. Possible Premium Principles 

4.1 Introduction 

Two principles that can sometimes meet the above constraints are: 1) expected 

value principle applied to an adjusted probability distribution and 2) a load 

proportional to the covariance of the risk with a selected "target" variable.  Since 

both operations are additive regardless of independence, the additivity constraints 

are always satisfied.  That higher percentage loads for higher layers can sometimes 

hold as well is shown below. 

 

4.2 Adjusted Distribution Principles 

Consider for example a line of business with the (shifted) Pareto severity 

distribution 1-(1+x/b)-2.  (For the sake of argument, assume that this distribution 

incorporates both process and parameter risk, if that distinction is of concern.)  The 

expected claim size is given by b, and the claim size limited to x is b(1-(1+x/b)-1).  

The premium calculation principle to be used is to replace b by 1.1b in the 

distribution function, and then compute the expected value of a loss under the 

adjusted distribution.  This will be done for two covers: primary coverage up to the 
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limit 10b, and excess coverage above this limit.   

 

Note that the original severity gives an expected loss of 10b/11 and b/11 for these 

layers, respectively.  Under the adjusted distribution, these become 110b/111 and 

12.1b/111, respectively, for a total of 122.1b/111, which is a 10% load overall.  This 

breaks down as a 9% load for the primary layer and a 20% load for the excess.  

Although in this example, the charge was the mean from the adjusted distribution, 

a constant times this mean could be used as well. 

 

This is an example of a scale transformation of a distribution.  In general, if f(x) is a 

density function and a>0, g(x)=af(ax) is a scale transformation.  It (g) is also a 

distribution function, i.e., positive and integrates to unity, which can be seen by the 

change of variable y=ax.  The distribution functions are related by G(x)= F(ax).  A 

scale transformation is particularly easy to implement if the distribution has a scale 

parameter, like b in the example above.  Transforming the scale of the severity 

distribution produces the same scale change on aggregate losses, and this is 

essentially the only way to do so. 

 

Replacing the distribution by any other distribution will satisfy the additivity 

constraints.  A scale transformation is probably the most elementary approach to 

finding a revised distribution.  The above example shows that this can result in 
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higher loads for excess layers, which is the empirical constraint.  A more intricate 

transformation is the combined scale-power transformation g(x)= ac(ax)c-1f((ax)c), 

i.e., G(x)=F((ax)c).  This transformation changes an exponential distribution into a 

Weibull, for example, or a Pareto into a Burr. 

 

 

4.3 Covariance Principles 

For the covariance case, let G, the price of gold, be the target variable, and let the 

premium for a loss variable X be aE(X) + bCov(X,G).  Because the covariance of 

two variables X and Y with a fixed auxiliary variable is additive whether or not X 

and Y are independent, this satisfies the additivity constraints.  Does it satisfy the 

empirical constraint?  Presumedly G is highly correlated with the inflation rate, as 

are the excess losses, while the primary losses are probably less so.  Thus the 

loading factor for excess could exceed that for primary under this principle. 

 

The price of gold may not be a reasonable target variable.  CAPM theory suggests 

using the gains on the stock market.  A more general approach is given by Ang and 

Lai (1987), who argue from capital market and insurance market considerations 

that a reasonable target variable might be the difference between total market 

insured losses and total investment gains on all publicly traded instruments in the 

economy.  As they show, this overcomes some of the problems insurance 
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practitioners have had with CAPM, and it quite possibly could give a higher 

percentage load to excess losses, but this would have to be verified.  However, both 

this and CAPM theory assume either a quadratic utility function or that risk 

preferences can be captured with just two moments, both of which are 

questionable. 

 

If by some chance the target variable turned out to be the losses on a particular 

insurance portfolio, then the covariance pricing principle applied to that portfolio 

would be the variance principle.  Changing the target variable for every contract so 

that the variance principle would always be applied would not satisfy the arbitrage 

constraints, however. 

 

4.4 Covariance Principle Results from an Adjusted Distribution 

Another method of adjusting a distribution is to multiply the density f(x) by a non-

negative function h(x) such that f(x)h(x) integrates to unity.  Quite a range of such 

functions could be used, for as long as the integral is finite, it can be made to be 

unity by applying a factor to h. 

 

As an example, let h(x)= 1 + b(E(Y|x)—E(Y)) for some target variable Y, where b is 

small enough for h to be positive.  Then E(h(X)) = 1 + b(EE(Y|X)—E(Y)) = 1, which 

shows that f(x)h(x) is a density function, and aE(Xh(X)) = aE(X) + ab(E(XY)—
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E(X)E(Y)) = aE(X) + abCov(X,Y), which shows that the adjusted distribution 

principle for this h is the covariance principle with target Y. 

 

4.5 Other Principles 

Can every principle which satisfies additivity be expressed as an adjusted 

distribution principle?  That is, does an additive premium principle induce a 

distribution function on loss random variables so that the price for any coverage 

can be expressed as the expected value of the losses for that coverage under that 

distribution? 

 

It would seem that this could be approximated to any desired degree of accuracy, 

according to the following reasoning.  For any m>0, consider the coverage Cm 

which pays a small amount d just in the event that losses are at least m.  First, it 

would seem that any coverage could be approximated by a linear combination of 

these coverages, i.e., as SaiCi.  For instance, full coverage up to some limit M would 

be approximately 1Cid. This pays d if losses are at least d, another d if they are at 

least 2d, etc.  This approximation gets better with smaller d.  If there is no upper 

limit, the sum can go to infinity.  If there are only partial payments, the coefficients 

ai would be less than 1. 

 

The price of the coverage Cm will be seen to induce a probability distribution that 

å
M/d

1=i
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by additivity will in turn generate the prices for all coverages.  The price of Cm 

given a distribution F would be d(1-F(m)).  Thus the price function induces the 

distribution F(m)=1-Price(Cm)/d. 

 

By additivity, the price of any layer of full coverage, i.e., ai's all equal 1, would be 

the sum of these terms d(1-F(i)), which would be the expected value under the 

induced distribution F.  If the coverage is not 100% in the layer, i.e., ai's <1, the price 

would have to reduce by the same percentage as the coverage, because by 

additivity the full coverage price would have to be the sum of the prices of the 

reduced coverage layer and its complementary layer.  Thus the price could again 

be computed as the expected value under the induced distribution. 

 

The result is that the only premium calculation principles that preserve additivity 

are those generated by transformed distributions.  This is similar to the results of 

Harrison and Kreps (1979), and later Harrison and Pliska (1981), who showed that 

in an arbitrage free market, pricing of financial instruments should take place 

according to the expectation under a risk adjusted probability distribution.  It is 

also closely related to the results of Delbaen and Haezendonck (1989).  They 

however apparently allow the random variable being priced to enter into the 

probability adjustment, so that a variance load can result, which contrasts to the 

arbitrage free considerations above. 
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 5. Application 

5.1 Minimum Rates on Line 

An empirical reinsurance market phenomenon is minimum rate on line.  The rate 

on line is the premium divided by the coverage limit, and most reinsurers establish 

a minimum they will accept for this ratio.  Although there are various ad hoc 

explanations for this practice, it would be interesting to see to what extent it could 

be explained as a form of risk load.  The example below shows that this can be 

partially accomplished by an adjusted distribution risk load. 

 

The above shifted Pareto distribution is similar in form but less heavy tailed than 

severity distributions commonly used in US casualty insurance.  The adjustment 

below can be done with more heavy tailed distributions with similar effect.  For 

this distribution, the expected loss in the layer (u,v) is b2(v-u)/(b+u)(b+v).  For 

pricing excess coverage above 1000b, assume use of a charge of 1.25´10-6 times the 

expected value from a distribution with 1-F(x)= (1+x/b)-.1 for x>1000b.  For this 

distribution, the layer expected value is (b/.9)[(1+v/b).9-(1+u/b).9].  Take the case 

where b=1000, which has severity mean=1000.  The expected loss per first dollar 

claim and the corresponding charge from this rule are shown for various $1 million 

excess layers: 

  Retention  Layer Expected  Layer Charge 
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   1,000,000   .499251  .602821 

  11,000,000   .007574  .490740 
  21,000,000   .002164  .460965 
  31,000,000   .001008  .443690 
  41,000,000   .000581  .431624 
  51,000,000   .000377  .422405 

Although an absolute flat charge per million of coverage is never reached, it is 

closely approximated by this rule.  The charges are certainly dropping off much 

more slowly than the expected losses.  This example shows that the kind of 

leveling of charges seen in minimum rates on line can be produced by adjusting 

distributions.  The key is to have a low absolute value for the negative exponent in 

the pricing distribution function.  The layer charges and the point at which leveling 

off occurs can be adjusted through the b parameter and the constant multiplier, 

here 1.25´10-6. 

 

This approach to minimum rates on line will approximate such a minimum for 

risks of a given size, but larger or smaller risks will have larger or smaller rates.  A 

true minimum rate on line applicable to all risks or treaties would seem to generate 

arbitrage possibilities.  A reinsurer could retrocede two minimum rated risks for 

the price of one.  In a competitive market, competition would reduce the 

minimums for smaller treaties to gain this retrocessional opportunity.   

In a quasi-monopolistic market where these savings are not passed on to the 

original cedent or insured, spirals of retrocession could be generated, where A 
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retrocedes to B who retrocedes to C who retrocedes to A, etc., with an arbitrage 

profit being taken at each step. 

 

 6. Summary 

A general advantage of changing the distribution is that it is easy to calculate 

charges, at least after the adjusted distribution has been established.  A particular 

advantage of a covariance load is that in the form of CAPM it has somewhat of an 

economic justification.  It is not clear that arbitrage theory itself could further 

specify the adjustments to the distribution, however.  The best test is probably 

empirical, i.e., what sells; life actuaries have been at this enterprise for years, 

adjusting mortality tables in different ways depending on whether an annuity or 

insurance is being marketed.  The time honored practice of fudging the table thus 

has stronger justification than might have been anticipated. 
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