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MODELING THE EVOLUTION OF INTEREST RATES: THE KEY TO DFA ASSET MODELS 

Fluctuations in short term and long term interest rates can have significant im-
pact on insurer financial results. Hence projecting the probabilities of these pos-
sible fluctuations is an important step towards a credible dynamic financial 
analysis. Changes in the level of interest rates as well as shifts in the shape of the 
yield curve both need to be modeled. Such shape-shifting is not an uncon-
strained random process - there are relationships among the yields of different 
terms - yet a good deal of flexibility is required to be able to reproduce historical 
curves. 
 
Financial theory suggests that the yield curve at any point in time is a function of 
the probabilities of the future values of the short-term interest rate. Thus a pro-
cess that produces probabilities for the evolution of the short-term rate will also 
have implications for the entire term structure. Simulating probabilities for fu-
ture yield curves can proceed by first simulating short-term rate probabilities 
over an extended horizon, and then using those to simulate yield curve probabil-
ities for a shorter horizon. 
 
To illustrate that procedure, this paper has four sections: first models for short-
term interest rate changes will be discussed, followed by a discussion of how to 
produce yield curves from those models. Then estimation issues are addressed, 
and the final topic is adding other correlated economic variables. 

1 MODELING SHORT-TERM INTEREST RATES 

Most models of short-term rates are expressed as stochastic differential equations 
involving Brownian motion. At the time of this writing that is not a topic on the 
CAS Syllabus, so a short deviation will be taken to explain the notation to be 
used. 
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1.1 Brownian Motion 

Standard Brownian motion is a sequence of random variables Xt indexed by time t, 
where Xt is normally distributed with E(Xt)=0 and Var(Xt)=t. Thus the variance 

grows over time. A Brownian motion with drift µ and variance s2 has Xt normally 

distributed with mean µt and variance s2t.  
 
There are other technical requirements: a Brownian motion must be a continuous 
process with stationary independent increments. That means that the increments 
Xs - Xt are independent for different choices of s and t, and are stationary in the 
sense that the distribution of Xs - Xt is the same for any s and t with a common 
value of s-t. One reason for the popularity of Brownian motion is that the con-
verse is also true: a continuous stochastic process with stationary independent 
increments must be a Brownian motion. (See L. Brieman Probability Addison-
Wesley 1968 ch. 12.) This can be related to the Central Limit Theorem. The sum 
of a lot of independent increments would tend to normality. 

1.2 Stochastic Differential Equations 

Methods for solving stochastic differential equations will not be addressed in 
this paper, but the notation will be used as a recipe for simulation. For example, 
let z be a standard Brownian motion, and consider the following equation for the 
short-term interest rate r: 

dr = µdt + sdz     (1) 
This can be interpreted as a way to simulate changes in r over short intervals. 

Say the short interval has length Dt. Then simulate the change in r (i.e., Dr) as a 

draw from a normal distribution with mean µDt and variance s2Dt . 

1.3 Models of Short-Term Interest 

It is fairly common in financial mathematics to express interest rates as continu-
ously compounding - what actuaries call the force of interest. Thus the usual in-
terest rate i becomes the force of interest r where (1+i)t = ert. The short-term rate is 
the instantaneous continuously compounding rate, which can be thought of as 
the limit of shorter and shorter terms. Sometimes this is estimated as the one-
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month rate, or even the three-month rate, or as a projection backwards from a 
few of the rates for shorter terms. 
 
One possible model for r is expressed in (1) above: r is a Brownian motion. An-
other possibility would be to let y = ln r be a Brownian motion. This is called ge-
ometric Brownian motion, and excludes any possibility that r could become 
negative. Single factor models are those that can be expressed using only one 
Brownian motion process. A number of these models are of the form: 

dr = (a+br)dt + srkdz    (2) 

where 0 £ k £ 1. Often k is taken as ½ or 1, which would make the variance of the 
change in rates proportional to r or r2. Typically a is non-negative and b is non-
positive. Note that this model has four parameters to estimate, even though it is 
a single-factor model. 
 
In this model it is not possible for r to become negative if a is positive, because if 
r gets to zero, all the terms become zero except for the positive drift, and r be-
comes positive in the next instant. When b is negative the process is called mean 
reverting. If |br| is above a, the drift will be downward, and if below a, the drift 
will become upward. Thus the drift is always back towards a. A Brownian mo-
tion process with no drift that is not adjusted to be mean reverting will eventual-

ly become quite wild. The variance s2t will grow with time, so the probability of 
finding the process to be within a given distance of zero will diminish to the 
vanishing point. However non-mean-reverting processes are sometimes used in 
short-term forecasts of interest rates. 
 
A mean-reverting process may display negative auto-correlation at some inter-
vals. That is, if it is going up at some point, it is likely to be going down at some 
future point. Interest rates seem to display this behavior. For instance, one study 
found that the logs of the growth rates of short-term rates are positively correlat-
ed from one month to the next, but negatively correlated to those of six and sev-
en months earlier (D. Becker, Statistical Tests of the Lognormal Distribution as a 
Basis for Interest Rate Changes, Transactions, Society of Actuaries, vol. XLIII). 
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Multi-factor models specify interest rate evolution as process involving the inter-
action of multiple random effects at each stage. For instance, a three factor model 
may specify that the interest rate evolves according to a random process in 
which the expected rate of change and its variance also evolve randomly. Six or 
seven parameters may be needed to describe these three random effects. 
 
One apparently successful three-factor model is given by Anderson and Lund 
(Working Paper No. 214, Northwestern University Department of Finance): 
 

drt = a(ut - rt)dt + strt
kdz1 k>0   (3) 

dln st = b(p - ln st)dt + vdz2    (4) 
dut = c(q - ut)dt + wut

1/2dz3    (5) 
Here there are three standard Brownian motion processes, z1, z2, and z3. The rate r 
moves subject to different processes at different times. It always follows a mean-
reverting process, with the mean at time t denoted by ut. But that mean itself 
changes over time, following a mean-reverting process defined by c, q, and w. 
The standard deviation of rt is rt

kst, where st also varies over time via a mean re-
verting geometric Brownian motion process. In total there are eight parameters: 
a, b, c, k, p, q, v, and w. 
 
A two-factor model by M. Tenney (The Double Mean Reverting ProcessTM, Socie-
ty of Actuaries Technical Report, 1996) takes a somewhat different approach to-
ward keeping the interest rate positive. Let y = ln r be the ln of the interest rate 
rather than the interest rate itself. Tenney’s model then can be expressed as:  

dyt = a(ut - yt)dt + vdz1    (6) 
dut = c(q - ut)dt + wdz2    (7) 

where z1 and z2 are correlated standard Brownian motion processes with correla-

tion r. Thus there are six parameters: a, c, q, v, w, and r. 
 
Neither of the above models is particularly easy to estimate from data, but once 
estimated, simulation is quite straightforward for either of them. Multi-factor 
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models are used despite the estimation difficulties because of some of the weak-
nesses of single factor models. These include difficulty in capturing the move-
ments of historical interest rates, and difficulty in matching the historical yield 
curves. The historical yield rates, for instance, display different rates of variation 
in different periods, and these do not necessarily correlate directly to the interest 
rate level. This could be evidence of stochastic movement of the variance, as in 
equation (4) above. It is also consistent with an infinite variance process, which 
would generate unstable measurements of observed variance in different peri-
ods. Modeling interest rates as such a process will not be addressed here, how-
ever. Historical yield curves occasionally have inversions, in which the short-
term rates are higher than those for longer terms. This usually is not allowed by 
the single-factor models. 

2 YIELD CURVES IMPLIED BY SHORT-TERM RATE MODELS 

One reason long-term rates are usually higher than short-term rates is that long-
term investors take the risk that intervening events will render the accumulated 
earnings worth less. In the very long run, though, all things might average out, 
and so very long-term rates are not necessarily higher than long-term rates, and 
may even be lower. It is not unusual, for instance, for 20 year rates to be a little 
higher than 30 year rates. Some infinite term bonds have been issued in the UK 
at fairly low rates. 
 
The standard method for producing yield curves from a stochastic generator of 
short-term rates is to change the parameters of the generator to make it generate 
higher short-term rates for time periods further into the future, and then to take 
the expected value of the future adjusted rates as the estimate of what the short-
term rate will be at that future period. The short-term rates so estimated for each 
future period then can be put together to make the long-term rates. This general 
concept will be spelled out more precisely below. 
 
Adjusting the future rates generated is equivalent to keeping the rates but ad-
justing the probabilities in a manner that increases the expected value of the fu-
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ture short-term rates. Adjusted probability methods seem intuitively reasonable, 
but they are also justified by arbitrage theory. Thus a short detour into arbitrage 
theory may be useful. 

2.1 Arbitrage of Interest Rates 

A common financial definition of an arbitrage opportunity is a possibility to 
make a net investment of zero, and end up with no probability of a loss and a 
positive probability of a gain. Arbitrage theory says that there are no arbitrage 
opportunities available. This is not universally accepted by casualty actuaries. 
Two types of comments are often heard: 

1. Investment houses make arbitrage profits all the time. They borrow at 
the 3-month rate and lend out at the higher 6-month rate. 

2. Investment houses make arbitrage profits all the time. They have so-
phisticated trading models that look for these opportunities continu-
ously, and put up big bucks whenever they arise, which is often. 

 
The first is not really an arbitrage profit, at least by the above definition. It may 
be a pretty good bet, but now and then the 3-month rate will jump while the 
money is still out at the now lower 6-month rate, and the investors will have a 
loss when they have to borrow at a higher rate than they are getting. 
 
The second may indeed be true. But if it is happening, the big boys are taking 
out all the arbitrage profits before anyone else ever sees them. It would be highly 
unusual for the end-of-day published rates to have arbitrage possibilities in 
them. If they appear in the 20 minute delay quotes on-line, they are probably 
gone by the time they appear. 
 
An example of an interest rate arbitrage is adapted from P. Boyle (Options and the 
Management of Financial Risk, Society of Actuaries, 1992). Suppose the yield curve 
is flat: all rates are 8%. In the next instant they will be flat again, with 50% prob-
ability of staying at 8%, but with 25% probability each of moving to 7% or 9%. 
Borrow 1000 due in 10 years, and use the 1000/1.0810 to make loans with single 
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payments of 500/1.085 due in 5 years and 500×1.085 due in 15 years. Each of those 
loans costs 500/1.0810 to make today, so this produces a net position of zero. But 
in the next instant if the interest rates go to 7% the net position is worth 0.550 

(i.e., 500/[1.0851.075]+500×1.085/1.0715 - 1000/1.0710). Interestingly enough, if they 
go to 9% it is worth 0.449. At 8% it stays at zero. This is an arbitrage opportunity 
by the above definition, and so it is ruled out by arbitrage theory.  
 
Although this is a highly artificial example, it shows that certain combinations of 
yield curves and interest rate movements are not possible under arbitrage theo-
ry. Boyle has more seemingly realistic examples that are likewise disallowed. 
This raises the issue of what yield curve / interest rate movement combinations 
are possible without generating arbitrage opportunities. 

2.2 Pricing Consistent with Arbitrage Theory 

It turns out that to rule out arbitrage possibilities, securities must be priced as the 
expected value of their returns under some probability distribution. The proba-
bilities do not have to be the actual probabilities of those returns. In fact, if they 
were, there would be no reward for risk, which is unrealistic. Thus risk-adjusted 
probabilities must be used. Sometimes the risk-adjusted probabilities are called 
risk-neutral probabilities. That is because when using them you act as if risk were 
not important - i.e., you just take expected values. But this does not mean risk is 
ignored: expected value pricing based on risk-neutral probabilities is a method 
for building risk premium into prices. 
 
One constraint on the risk-adjusted probabilities is that they are equivalent to the 
actual probabilities in the sense that they give zero probability to the same set of 
events. This is violated in the Boyle example above, where there is positive 
probability of a change in interest rates, but prices are based on expected values 
under the assumption of no possibility of changing rates. In this situation the ad-
justed probabilities give no chance to the events that can lead to the actual posi-
tive profit probabilities. 
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Although it is complex to prove that no-arbitrage and adjusted-probability ex-
pected-value pricing are equivalent, the following heuristic argument may help 
make it plausible. The key to avoiding arbitrage is to ensure that prices are addi-
tive. That is, the sum of the prices of a combination of securities that always pro-
duce the same outcomes as another given security should equal the price of that 
security. If not, buying the cheaper and selling the dearer set will give a profit in 
every case. But if prices of all securities are additive, there must be some set of 
event probabilities that gives those prices as expected values. The key to seeing 
that is to define fundamental securities that relate to the specific possible events. 
For instance with interest rates, those securities might pay 1 if the interest rates 
exceed specific targets for each term, and 0 otherwise. Such securities could be 
defined for any combination of term interest rates. The prices of those securities 
would define a joint probability distribution for the interest rates, and all other 
securities could be priced as combinations of those, which would be like taking 
their expected values under the distribution so defined. 

2.3 Arbitrage-Free Pricing under Interest Rate Generators 

The price at time t of a zero-coupon bond maturing at time T is the discounted 
value of the payment. With constant interest this is no problem, but with sto-
chastic interest this would require the expected average discount, with the dis-
count taken with respect to the risk-adjusted probabilities. The price of a bond 
that pays 1 at maturity can be expressed as: 

P(t,T) = Et
*[exp(-òrsds)]    (8) 

where the integral goes from t to T, and E* is the mean using the risk-adjusted 
probabilities. From the price of the bond, the implied interest rate for that term 
can then be backed out. In practice, the integral is evaluated as a sum over the 
small intervals used in the generation of short-term rates. 
 
Thus the term structure is tied to the future paths of the short-term rate. Once an 
interest rate generator is available, what needs to be specified is how the risk-
adjusted probabilities are to be defined. What is usually done is to change the 
generator so that it produces higher interest rates over time. Strictly speaking 
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this gives a higher rate at each probability, but this then produces higher proba-
bilities for the higher rates, which is what arbitrage theory is looking for. 
 
A typical adjustment is to add something to the drift terms. For instance, Ander-

son and Lund to (3) - (5) above add lstrtdt to the r diffusion and kutdt to the u dif-
fusion. This gives a new process for generating risk-adjusted short-term rates, as 
below: 
 

 drt = a(lstrt+ut - rt)dt + strt
kdz1   l,k>0          

(9) 
dln st = b(p - ln st)dt + vdz2     (10) 

dut = c(kut+q - ut)dt + wut
1/2dz3      k>0   (11) 

Thus both r and u increase at higher rates, on the average, in the risk-adjusted 
process. The rate scenarios generated by (9) - (11) are used to evaluate the ex-
pected value of the integral in (8) to give bond prices, which are essentially the 
discount rates for the various terms. 
 
Tenney similarly increases the drifts, but also changes the rates of mean rever-
sion. The adjusted process from (6) and (7) is: 

dyt = fa(l+ut - yt)dt + vdz1 l>0, f>1   (12) 

dut = jc(k+q - ut)dt + wdz2 k>0, 1>j>0   (13) 
Note that in the u diffusion the mean reversion is slower than in the unadjusted 
process. This increases the variability of u. 

3 ESTIMATION OF PARAMETERS 

Since the same parameters predict both the movements of short-term rates and 
the term structure, fitting can be done to either or both. If the fit is going to em-
phasize the term structure, equation (8) can be fit via simulation. However, this 
could require that a simulation be carried out a each step of a parameter search, 
which can be quite calculation intensive. Thus closed form or otherwise more 
tractable forms are usually sought for the zero-coupon bond prices at each ma-
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turity. Even if the fit is going to emphasize movements of the short-term rate, 
further fitting to the bond prices is needed to get the risk adjustments.  
 
The usual approach to bond price formulation is to develop a stochastic differen-
tial equation for the price of the bond. This can then be solved explicitly or nu-
merically. Developing such equations typically uses Ito’s Lemma, which is the 
chain rule for stochastic calculus. 

3.1 Ito’s Lemma 

Brownian motion is continuous, but is very jumpy at small scales, so is not dif-
ferentiable. However a method of integration of these processes has been devel-
oped. This allows the use of differential notation, but the usual rules of 
derivative calculus, such as the chain rule, do not apply. However an analogue 
of the chain rule has been developed, and is known as Ito’s Lemma. Suppose a 
process x can be expressed by dx = ydt + sdz, where z is a standard Brownian 
motion. If f is a twice differentiable real-valued function, then: 

df(x) = ½f’’(x)s2dt + f’(x)dx    (14) 
The second term is the usual chain rule, while the first is sometimes called the 
convexity term. 
 
For example, suppose the change in r is proportional to the current level of r: 

dr = µtrdt + srdz     (15) 
Let y = f(r) = ln r. Then f’(r)=1/r and f’’(r)=-1/r2, so: 

dy = - ½ s2dt + µtdt + sdz    (16) 
Thus the two methods illustrated above for keeping r positive - namely Browni-
an motion proportional to a power of r and geometric Brownian motion - are 
closely related. When converting a lognormal mean to the normal mean you add 

½s2 before exponentiating, which corresponds to the extra term in (16). 
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3.2 Solving for Bond Price 

The price of a bond is some function f of the interest rate r. Thus Ito’s Lemma can 
be used to derive a differential equation for the bond price. The usual approach 
in the single factor setting is to specify a risk-adjusted diffusion for r like: 

drt = ut(rt)dt + st(rt)dz    (17) 
Then the price at time t of a bond maturing at time T, expressed as P(rt,t,T), can 
be shown to follow: 

rP = Pt + uPr + ½s2Prr    (18)  
which is a differential equation with boundary condition P(r,T,T) = 1. 
For example, see Vetzal A Survey of Stochastic Continuous Time Models of the Term 
Structure of Interest Rates, Insurance Mathematics and Economics (14), 1994. 
 
In the multi-factor setting a similar differential equation can be derived, with 
partial derivatives of the price entering from all factors. In general if Y is the vec-

tor of factors, u is the vector of risk-adjusted drifts for the factors, and s is the 
vector of variances, then the bond price P satisfies: 

rP = Pt + uTPY + ½tr[ssTPYY]      (19) 
It turns out that the discount formula (8) above is a solution to (19), sometimes 
called the Feynman-Kac solution. Thus using simulation to solve (8) does solve 
(19). The advantage of going to (19) directly is that it can sometimes be solved in 
closed form, as in the example below, or by numerical methods that are less in-
tensive than simulation. This is the approach taken by Tenney, for example, to 
estimate the parameters in the geometric Brownian motion two-factor model (6)- 
(7) above. However, Anderson and Lund solve for the diffusion parameters di-
rectly, which requires using (8) and a lot of computation or (19) and some deri-
vation and numerical methods to get the risk terms. 

3.3 A Simplified Model 

Since the model parameters affect both the evolution over time of the short-term 
rate and the term structure at each point, both effects can be used to evaluate the 
goodness of fit. Thus both will influence the choice of parameters - i.e., parame-
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ters are needed that fulfill both roles. In the models above it is difficult to illus-
trate this interaction, as the generation of the term structure is complex. 
 
Thus to illustrate these general concepts, parameter estimation will be discussed 
for a somewhat simplified three-factor model of the short-term interest rate - one 
with a closed form solution for the yield curve. This is the model of Kraus and 
Smith (A Simple Multifactor Term Structure Model, The Journal of Fixed Income, 
March 1993). 
 
K&S postulate that the term structure at any point in time can be described as a 

function of three factors r, µ, and a. These factors evolve over time through 
Brownian motion, according to the equations below. 

dr = µdt + sdz1     (20) 

dµ = mdt + sdz2     (21) 

da = dm - d(s2) = bdt+vdz3    (22) 
So r is just a Brownian motion process, but the drift and variance both change 
over time. Here the time subscripts on the variables that change over time are 

omitted, but are implied. The drift µ is itself subject to a Brownian motion. The 

variance of the r diffusion, s2, is linked with the drift of the drift, m, as a single 

process a = m - s2. This turns out to simplify the term structure formulation. 
However the variance itself could follow some unspecified process, like mean-
reverting geometric Brownian motion. 
 
On empirical and practical grounds it seems reasonable to set b to zero. Doing so 
leaves only two parameters - s and v. It is problematic that the model is not 
mean reverting, and interest rates are allowed to become negative. However, 
this may be a reasonable model to use for short-term projections. The advantage 
of its formulation is in the simplicity and flexibility of the resulting term struc-
ture. With some additional assumptions, the term structure turns out to be a 
simple polynomial form in the term T, with coefficients that are linear functions 
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of the parameters and factors of the model. Thus long-range simulations are not 
needed to generate a term structure distribution for the near future. 
K&S assume that the yield rates are linear functions of the factors (but not of the 
term). They also introduce three risk-adjustment coefficients, one for each factor, 

that are similar to the l and k risk terms in the models above.  They then derive, 
using a no-arbitrage argument, a polynomial form for the term structure. This 
proceeds by setting up a differential equation for bond prices, from (19):   

rP = Pt +(µj+lr)Pr +(m+lµ)Pµ +laPa + ½[s2Prr + s2Pµµ +v2Paa]  (23) 

where lF is the risk factors for factor F. Here an additive constant risk factor has 
been added to each drift coefficient. This equation has a closed form solution. 
Let yj(T) denote the yield for term T at time j. The assumptions then give: 

yj(T) = rj + T(µj+lr)/2 + T2(aj+lµ)/6 + T3ls/24 - T4s2/40 - T6v2/504 (24) 
Note that the equation is a sixth degree polynomial in the term, and the higher 
order coefficients are negative. This implies that for long enough terms the yield 
rate will decrease. For the parameters estimated below, the thirty year rate is of-
ten less than the twenty-five year rates, which is often the case in the data as 
well. Of course this also implies that very long term rates will be negative, which 
is not realistic. The model clearly should not be used for very long terms. 
 
The first three (quadratic) terms of the polynomial vary with time. An interpreta-
tion is then that there is a fixed sixth degree polynomial for the standard yield 

curve, and this gets shifted up 
and down by a quadratic over 
time. The graph  to the left 
shows the polynomial defined 
by the estimates of the fixed 
terms of (17) - i.e., all the ele-
ments without subscripts, 

namely Tlr/2 + T2lµ/6 + 

T3ls/24 - T4s2/40 - T6v2/504.  
The quadratic shift gives quite  
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a bit of flexibility to the shape of the yield curve. Reversals and other unusual 
shapes are readily produced. This is in contrast to single factor models, which 
typically allow only parallel shifts. The quadratic terms for a selected quarter 
and the resulting yield curve are shown below. 
 

3.4 Results and Discussion 

The fitting approach described below gave the following estimates based on 
quarterly data from 82:4 to 95:4. 

lr lµ ls s2 v2 

.0146 -3.75E-3 4.82E-4 6E-6 3.8E-8 

The fit was reasonably good, which to some extent justifies the assumptions. 

However it seems unusual that lµ is negative, in that the risk adjustments are 
supposed to push rates up. 

3.5 Fitting Parameters 

Parameters were fit using term structure data for 1982:Q4 - 1995:Q4. For quarter-
ly observations the evolution equations become: 

Dr = µ/4 + e1s/2     (25) 
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Dµ = m/4 + e2s/2     (26) 

Da = e3v/2       (27) 

Here the e’s are random draws from the standard normal distribution. The term 

structure is what is observable, so the fitting is based on fitting equation (24) to 
the data for each quarter. The evolution equations (25) - (27), however, put con-
straints on the parameters. There are at least these constraints: 
1. The T4 and T6 coefficients must be negative. 

2. v2 in the T6 coefficient is the variance of the changes in the T2 coefficients a. 

3. s2 in the T4 coefficient is the variance of the changes in the T coefficients µ. 
4. The average change in the T coefficient is m which is imbedded in the T2 co-

efficient. 

5. The constant term ri changes by an average of µI from the T term and by a 

variance of sI, which is imbedded in the T2 term. 
 
The basic approach is to get coefficients of Ti by regression, subject to the con-

straints. Suppose we have a preliminary estimate of the coefficients of the Ti. 

Then some of the constraints can be used to separate regression coefficients into 
components, and then these can be used to check other constraints. For instance, 

the constant term ri should change by an average of µi and by a variance of si. 

These relationships can be used to estimate lr and si. To see this in greater detail, 

to estimate lr, by adding up the changes in r we get: 

rn - r1 @ Sµi/4      (28)   

Then, since nlr can be expressed as S(µi+lr) - Sµi, (28) can be used to estimate  lr, 
as the first sum can be calculated from the T coefficients. 
 

Having estimated lr, the T coefficients then give the µi’s. To estimate si, use that: 

E(ri+1-ri-µi/4)2 = si
2/4    (29) 

The expression inside the expectation on the left-hand side of this equation can 
now be calculated for each i. Call it Bi. The following ad hoc method is one way 
to estimate the expectation at each i. Take a seven term centered moving average 
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of the Bi at each point, with the middle three points getting double weight. To 
reduce the effect that extreme observations have on this average, trim each point 
to a maximum of twice its own centered seven point average. Then re-average 
the points to estimate the expected Bi at each point, and use that as the estimate 

of si
2/4 from (22). There are clearly other ways to estimate the si

2. Since these do 
not directly impact the term structure, their estimation is not critical to the over-

all fit. The smoothing of the Bi to estimate si
2/4 is shown in the graph below. 

 

A similar procedure can be used to split out mi and lµ from the T2 coefficient. 

Since mi is just ai - si, subtracting si from the coefficient just leaves mi + lµ. Using 

the fact that µi changes by an average of mi and with variance s2 (known from T4)  

gives a way to estimate lµ. From the constraint (26) the following should hold:   

s2/4 = E(µi+1-µi-mi/4)2     (30) 

Each value of lµ implies values for the mi’s, so lµ can be estimated as the value 
that would give the resulting mi’s that satisfy (30).  The m’s that result from 

matching this variance are graphed along with the change in µ that they are 
meant to average in the graph below. The variance is quite large, so the fit may 
be reasonable. 
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Another requirement is µn-µ1@åmi/4, seen by summing (26) over all periods. This 
has not been used to estimate anything, so it was used as a test of the fit. The re-

lationship E(ai+1-ai)2@v2, from (27) was used as a constraint. The right side of this is 
the T6 coefficient, and the left side is called the implied v2. 
 
A search procedure (simplex based) was used to fit the parameters. The search is 

looking for the three higher order coefficients defined by ls, s, and v. What is 
minimized is the sum of squared errors between the actual and fitted yield rates 
at each period plus a weighting constant times the difference between v2 and the 

implied v2. In the minimization, for each trial ls,s,v triplet, the sum of the higher 

terms, i.e., T3ls/24-T4s2/40-T6v2/504, is subtracted from the yield rates. This 
leaves a quadratic expression for the yields so adjusted for each quarter. The 
three quadratic coefficients are fit by regression for each time period to the ob-
served interest rates for the terms used. These were 3 month, 6 month, 1 year, 2 
year, 3 year, 5 year, 7 year, 10 year, and 30 years. This gives estimates for the co-

efficients rj ,(µj+lr)/2, and (aj+lµ)/6 for each period j. Then the above approach is 
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used to split these out into µj, lr, aj, lµ, mj, and sj. The sum of squared errors and 
the difference between the trial and implied v2’s are computed. New triplets are 
tried until the sum is minimized. That gave the parameters above. The resulting 

lµ of -0.00375 is roughly in the ballpark of the value of -0.00303 need to equalize 

µn-µ1 and åmi/4. 

3.6 Goodness of Fit 

The graph below shows the actual and fitted interest rates by term for a bad fit-
ting quarter, a good fitting quarter, and the average of all the periods. The bad 
fit was actually somewhat exceptional, as the good fits were more typical. 
 

The Best of Fits and the Worst of Fits (and the Average) 

Although the fitting was simplified due to the closed form of the yield curve, the 
relationships between the yields and the movement of interest rates would hold 
in the more complex cases as well. Thus this example illustrates the inter-
relationships to be preserved in interest rate fits. 

4 OTHER ECONOMIC VARIABLES 

The term structure of interest rates incorporates investors’ anticipations of future 
rates and thus implicitly of future levels of prices and economic activity. In re-
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cent years a number of articles have been published which attempt to forecast 
economic variables based on the term structure. For instance, see Eugene F. 
Fama Term Structure Forecasts of Interest Rates, Inflation, and Real Returns, Journal 
of Monetary Economics 25 (1990) pp. 59-76. It appears from this research that as-
pects of the yield curve do correlate with future economic activity, and so these 
correlations need to be taken into account when generating economic scenarios. 
 
Forecasts will of course not be perfect, so when forecasting economic series from 
interest rates the prediction distributions will need to be taken into account. In a 
simulation context, for a given time frame the interest rate generator will pro-
duce yield curve scenarios, and then from each of those a prediction can be 
made of the other economic variables. Then a random draw from the prediction 
distribution can be made to produce a specific simulated scenario that includes 
interest rates and other series. This procedure should produce scenarios that are 
realistic over the time period chosen and with reasonable relative probabilities. 

4.1 Examples of Prediction of Economic Variables from Yield Curves 

To illustrate this process, two economic series are estimated from the term struc-
ture: the Consumer Price Index (CPI) and the Wilshire 5000 Index (W5). These 
both could have significant impact on insurer financial results. 
 
Measures of the term structure typically are the interest rates for different terms 
as well differences between interest rates for different terms, e.g., the 10 year rate 
minus the 3 year rate. These are used at various lags. In this exercise all rates and 
lags are in multiples of a calendar quarter, so for notational purposes the time 
periods will be expressed as quarters. Notation such as 3L40:12 will denote the 
third lag of the difference between the 40 quarter and 12 quarter interest rates, 
i.e., the 10 year rate less the 3 year rate seen 9 months ago. Without the colon 
0L40 is just the 10 year rate for the current quarter. Thus the notation comes with 
an actuarial spirit. 
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4.2 Consumer Price Index 

The variable estimated here, denoted qccpi, is the ratio of the CPI for a quarter to 
that for the previous quarter. The variables used in the fit along with indications 
of their significance are shown in the table below. The data used is from the 
fourth quarter of 1959 to first quarter 1997, as this was available from pointers 
within the CAS website. 

Change in CPI 
Variable Estimate T-statistic Significance Level 

1:4Lqccpi 0.9994 1649.4 <.01% 
0L40:4 -0.2668 -5.3349 <.01% 

2L40:20 0.8486 4.6411 <.01% 
3L2:1 0.7182 3.4663 .07% 

 
The most important indicator of inflation is recent inflation. The variable used to 
represent this, denoted 1:4Lqccpi, is the average of qccpi for the past four quar-
ters. The coincident variable, 0L40:4 has a negative coefficient. This may be due 
to inflation influencing current interest rates, but with a greater impact on short 
term than long term rates, thus flattening the yield curve. At lag 2 quarters, the 
coefficient for 2L40:20 is positive and at lag 3 quarters that for 3L2:1 is positive. 
These indicate a general tendency for a steeper yield curve to anticipate future 
inflation. Other yield spreads also appear to have significant impact on inflation, 
but only a few can appropriately be included in any one regression. Interest rate 
series are highly correlated, and many that do not enter the formulation will still 
end up having significant correlations with the inflation rates produced. The co-
efficients suggest that over 80% of any increase in these yield spreads will be re-
flected in subsequent inflation. 
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The r-squared, adjusted for degrees of freedom, is 65%. The standard error of the 
estimate is 0.0051. Thus the typical predicted quarterly change is accurate to 
about half a percentage point. The standard error is the standard deviation of a 
residual normally distribution around the predicted point, which can be used to 
draw the scenario actually simulated. The actual vs. fit is graphed below. The 
series can be seen to be fairly noisy, but the model does pick up the general 
movements over time. The residuals are graphed on a normal scale below. Nor-

mality looks to be reasonably consistent with the observed residuals. 
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4.3 Wilshire 5000 

The variable modeled, qcw5, is the ratio of the W5 at the end of a quarter to that 
at the previous quarter end. In this case the CPI percentage change variable qccpi 
was included in the regression as an explanatory variable. This allows creation 
of scenarios that have simulated values of W5 that are probabilistically con-
sistent with the CPI value for the scenario. 
 
The fitted equation for quarter ending data 1971 through first quarter 1997 is 
shown in the table below. In this regression only two variables were used, but 
they are composite series. The first, denoted 0-4Lqccpi, is the increase in qccpi 
over the last year, i.e., the current rate less the rate a year earlier. This variable 
has a negative coefficient, indicating that an increase in inflation is bad for equi-
ty returns. The other variable is denoted qcrelsprd. It represents the previous 
quarter’s increase in the long-term spread less this quarter’s increase in the 
short-term spread. Here the long-term spread is the difference between 10-year 
and 5-year rates, and the short-term spread is the difference between 6-month 
and 3-month rates. The increases noted are the quarter-to-quarter arithmetic in-
creases in these spreads. 
 
The coefficient on qcrelsprd is positive. This variable is positive if the increase in 
the short-term spread is less than the previous increase in the long-term spread, 
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or if its decrease is greater. Either could suggest moderating inflation and inter-
est rates, and thus be positive for equity returns.  
 

Quarterly Change in Wilshire 5000 
Variable Estimate T-statistic Significance Level 

       0-4Lqccpi  -2.7113  -3.1936 0.2% 
qcrelsprd 11.869 4.5273 <.01% 
constant 1.02316 145.311 <.01% 

 
The adjusted-r-squared is only 24% for this regression, indicating that the fit is 
not particularly good. The residual standard deviation is .0721, which allows a 

fairly wide deviation from the model. The actual vs. fit is graphed below. 
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The residuals also appear to be more heavy-tailed than for a normal distribution. 
They are graphed on a normal scale below. 

An alternative would be to simulate equity returns independently of interest 
rates and inflation. However, even the weak relationship found here would re-
flect the correlations that are likely among these variables, and would thus be 
preferable to assuming independence. More research into appropriate models 
for equity returns would be worthwhile.  
 
Fitting percentage changes typically gives low r-squareds. The fit is usually bet-
ter when translated to cumulative. The graph below shows cumulative products 
of the actual and fitted changes since 1974. The fit appears better on this basis. 

 
The fit is not unbiased for products of factors over the entire horizon, so the 
above graph begins at a point selected to give a horizon where it is unbiased. A 
fit in the logs of the change ratios is unbiased for products when exponentiated. 
The graph below shows this fit for the same variables used in the original re-
gression. The fit is actually not quite as good as the original. Both are fairly close 

Cumulative Changes

0%

100%
200%

300%
400%

500%
600%

700%

Actual
Fitted

Normal Plot of Wilshire 5000 Residuals

-0.25
-0.2
-0.15
-0.1
-0.05

0
0.05
0.1
0.15
0.2
0.25

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Normal Residual

Fi
tte

d 
Re

si
du

al



 25 

cumulatively for the past ten years, however. 

  

5 APPLICATIONS 

Duration matching, which seems to work well for life insurers, is problematic for 
P&C carriers, who have shorter duration liabilities, and so would have to give 
up expected return to match. Simulation studies have suggested that going long-
er on assets provides a margin to P&C insurers, which can compensate for dura-
tion mismatch. Realistic stochastic asset generators may help quantify this trade-
off. Even duration matching and its refinement to convexity matching do not 
provide complete hedges against interest rate movements. As an alternative, the 
robustness of investment strategies can be tested against the whole range of pos-
sible outcomes, by probability level, by measuring against simulated assets. 
 
Asset simulations can be tied to liability simulations as well, e.g., by linking in-
flation movements to loss trends. The total risk of assets and liabilities can thus 
be quantified simultaneously by such dynamic financial analysis. 
 
Acknowledgment: The valuable assistance of John Gradwell in gathering data 
and fitting models is gratefully acknowledged. 

Appendix - Summary Evaluation of Variables 

Variable Wilshire 5000 Equity Price Index 
Rationale Broad-based indicator of value of equity investments 
Source Downloaded from the website “Wilshire Index History”, address wil-
shire.com/home/products. Could not find a pointer on the CAS website. 
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Method of Analysis Multiple regression based on series already modeled, 
which in this case were Treasury yields and the CPI. 
 
Variable Consumer Price Index 
Rationale Inflation measure that covarys with interest rates, trend factors, and 
other economic series. 
Source Downloaded from the CAS DFA website, following the pointers “Data 
Access”, “financial and economics databases”, “Consumer Price Index”, at the 
address http://205.230.252.34. However this site ends with data from first quar-
ter 1995. 
Method of Analysis Multiple regression based on series already modeled, 
which in this case were Treasury yields. 
 
Variable US Treasury yields for 3 months, 6 months, 1 year, 2 years, 3 years, 5 
years, 7 years, 10 years, and 30 years 
Rationale Many insurers invest in Treasury securities, and when these are car-
ried at market value their price will depend specifically on the interest rates. 
Other economic variables are correlated to interest rate movements. 
Source Downloaded from the website maintained by the Saint Louis Federal Re-
serve Bank’s “FRED Database” , address www.stls.frb.org/fred/, which has a 
pointer from the CAS DFA website. 
Method of Analysis Simulation based on multi-factor arbitrage-free diffusion 
processes fit to historical interest rate movements and yield curves. 


