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Liability Modeling – Empirical Tests of Loss Emergence Generators 

Gary G. Venter 

INSTRAT 

 

Historical loss reserve analysis focused on reserving techniques. More recently the em-

phasis is on identifying and parameterizing models of the reserve emergence process.  

Another application of a reserve emergence model is to use it to simulate realizations of 

the reserving process for dynamical financial analysis. This paper introduces a classifi-

cation system for reserve emergence models and addresses empirical tests for identify-

ing the appropriate model for the data at hand. 

 

 

ASTIN COLLOQUIUM 1998



Liability Modeling – Empirical Tests of Loss Emergence Generators 

Stochastic generators of the loss emergence process for dynamic modeling of in-

surance companies need to produce scenarios of both paid and incurred devel-

opment in order to model the cash flow, earnings, and surplus positions of the 

company. One way to do this in an integrated fashion is to simulate the paid 

losses from a stochastic generator, then apply loss-reserving methodology to 

those in order to generate the incurred losses. The various loss generators dis-

cussed below usually imply an associated optimal reserving procedure, which 

can then be applied. On the other hand, if the company has a fixed reserve meth-

odology that it is going to use no matter what, then that methodology can be 

used to produce the carried reserves from the simulated emergence. 

 

The generators, however, could generate incurred losses directly, and some other 

method could be applied to link paid with incurred losses. For this discussion, 

then, “emergence” can mean either case or paid emergence, or both. The main 

concern here is simulating the emerging losses by accident or policy period.  

 

This may or may not involve simulating the ultimate losses. For instance, one 

way to generate the losses to emerge in a period is to multiply simulated ulti-

mate losses times a factor drawn from a percentage-emerged distribution. This 

method might involve some quite complicated methods of simulating ultimates, 

but in the end generates emerged losses by age as a percentage of ultimate. Other 

emergence patterns that do not rely on a percentage of ultimate will be consid-

ered below, and the reserving methods appropriate for each will be discussed. 

Then methods for identifying the emergence patterns from the data triangles will 

be explored. 

Types of Emergence Patterns 

Six characteristics of emergence patterns will be considered here. Each will be 

treated as a binary choice, thus producing 64 types of emergence patterns. How-
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ever there will be sub-categories within the 64, as not all of the choices are actual-

ly binary. The six basic choices for defining loss emergence processes are: 

 

Do the losses that emerge in a period depend on the losses already emerged? 

Mack has shown that the chain ladder method assumes an emergence pattern in 

which the emerged loss for a period is a constant factor times the previous 

emerged, plus a random disturbance. Other methods, however, might apply fac-

tors only to ultimate losses, and then add a random disturbance. The latter is the 

emergence pattern assumed by the Bornheutter-Ferguson (BF) method, for ex-

ample. 

Is all loss emergence proportional? Both the chain ladder and BF methods use 

factors to predict emergence, and so are based on processes where emergence is 

proportional to something – either ultimate losses in the BF case or previously 

emerged in the chain ladder.. However, the expected loss emergence for a period 

could be constant – not proportional to anything. Or it could be a factor times 

something plus a constant. If this is the emergence pattern used, then the reserv-

ing methodology should also incorporate additive elements. 

Is emergence independent of calendar year events? Losses to emerge in a peri-

od may depend on the inflation rate for the period. This is an example of a calen-

dar year or diagonal effect. Another example is strong or weak development due 

to a change in claim handling methods. Thus this is not a purely binary question 

– if there are diagonal effects there will be sub-choices relating to what type of 

effect is included. The Taylor separation method is an example of a development 

method that recognizes calendar year inflation. In many cases of diagonal effects, 

the ultimate losses will not be determined until all the development periods have 

been simulated.  

Are the parameters stable? For instance a parameter might be a loss develop-

ment factor. A stable factor could lead to variable losses due to randomness of 

the development pattern, but the factor itself would remain constant. The alter-
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native is that the factor changes over time. There are sub-cases of this, depending 

on how they change. 

Are the disturbance terms generated from a normal distribution? The typical 

alternative is lognormal, but the possibilities are endless. Clearly the loss devel-

opment method will need to respond to this choice. 

Are the disturbance terms homoskedastic? Some regression methods of devel-

opment assume that the random disturbances all have the same variance, at least 

by development age. Link ratios are often calculated as the ratio of losses at age 

j+1 divided by losses at age j, which assumes that the variance of the disturbance 

term is proportional to the mean loss emerged. Another alternative is for the 

standard deviation to be proportional to the mean. The variance assumption 

used to generate the emerging losses can be employed in the loss reserving pro-

cess as well.  

Notation 

Losses for accident year w evaluated at the end of that year will be denoted as 

being as of age 0, and the first accident year in the triangle is year 0. The notation 

below will be used to specify the models.  

 

cw,d: cumulative loss from accident year w as of age d 

cw,¥: ultimate loss from accident year w 

qw,d: incremental loss for accident year w to emerge in period d 

fd: factor used in emergence for age d 

hw : factor used in emergence for year w 

gw+d: factor used in emergence for calendar year w+d 

ad: additive term used in emergence for age d 

Question 1 

The stochastic processes specified by answering the six questions above can be 

numbered in binary by considering yes=1 and no=0. Then process 111111 (all an-

swers yes) can be specified as follows: 
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 qw,d= cw,d-1fd + ew,d     (1) 

 

where ew,d is normally distributed with mean zero. Here fd is a development fac-

tor applied to the cumulative losses simulated at age d-1. A starting value for the 

accident year is needed which could be called cw,-1. For each d it might be reason-

able to assume that ew,d has a different variance. Note that for this process, ulti-

mate losses are generated only as the sum of the separately generated emerged 

losses for each age. 

 

Mack has shown that for process 111111 the chain ladder is the optimal reserve 

estimation method. The factors fd would be estimated by a no-constant linear re-

gression. In process 111110 (heteroskedastic) the chain ladder would also be op-

timal, but the method of estimating the factors would be different. Essentially 

these would use weighted least squares for the estimation, where the weights are 

inversely proportional to the variance of ew,d. If the variances are proportional to 

cw,d-1, the resulting factor is the ratio of the sum of losses from the two relevant 

columns of the development triangle. 

 

In all the processes 1111xx Mack showed that some form of the chain ladder is 

the best linear estimate, but when the disturbance term is not normal, linear es-

timation is not necessarily optimal. 

 

Processes of type 0111xx do not generate emerged losses from those previously 

emerged. A simple example of this type of process is: 

 

 qw,d= hwfd + ew,d    (2) 

 

Here hw can be interpreted as the ultimate losses for year w, with the factors fd 

summing to unity. For this process, reserving would require estimation of the f’s 
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and h’s. I call this method of reserving the parameterized BF, as Bornheutter and 

Ferguson estimated emergence as a percentage of expected ultimate. The method 

of estimating the parameters would depend on the distribution of the disturb-

ance term ew,d. If it is normal and homoskedastic, a regression method can be 

used iteratively by fixing the f’s and regressing for the h’s, then taking those h’s 

to find the best f’s, etc. until both f’s and h’s converge. If heteroskedastic, 

weighted regressions would be needed. If a lognormal disturbance is indicated, 

the parameters could be estimated in logs, which is a linear model in the logs. 

Question 2 

Additive terms can be added to either of the above processes. Thus an example 

of a 0011xx process would be: 

 

 qw,d= ad + hwfd + ew,d    (3) 

 

If the f’s are zero, this would be a purely additive model. A test for additive ef-

fects can be made by adding them to the estimation and seeing if significantly 

better fits result. 

Question 3 

Diagonal effects can be added similarly. A 0001xx model might be: 

 

 qw,d= ad + hwfdgw+d + ew,d   (4) 

 

Again this can be tested by goodness of fit. There may be too many parameters 

here. It will usually be possible to reasonably simulate losses without using so 

many distinct parameters. Specifying relationships among the parameters can 

lead to reduced parameter versions of these processes. For instance, some of the 

parameters might be set equal, such as hw=h for all w. Note that the 0111xx pro-

cess qw,d= hfd + ew,d is the same as the 0011xx process qw,d= ad + ew,d, as ad can be 
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set to hfd. The resulting reserve estimation method is an additive version of the 

chain ladder, and is sometimes called the Cape Cod method.  

 

Another way to reduce the number of parameters is to set up trend relationships. 

For example, constant calendar year inflation can be specified by setting 

gw+d=(1+j)w+d. Similar trend relationships can be specified among the h’s and f’s. 

If that is too much parameter reduction to adequately model a given data trian-

gle, a trend can be established for a few periods and then some other trend can 

be used in other periods. 

Question 4 

Rather than trending, the parameters in the loss emergence models could evolve 

according to some more general stochastic process. This could be a smooth pro-

cess or one with jumps. The state-space model is often used to describe parame-

ter variability. This model assumes that observations fluctuate around an ex-

pected value that itself changes over time as its parameters evolve. The degree of 

random fluctuation is measured by the variance of the observations around the 

mean, and the movement of the parameters is quantified by their variances over 

time. The interplay of these two variances determines the weights to apply, as in 

credibility theory. 

 

To be more concrete, a formal definition of the model follows where the parame-

ter is the 2nd to 3rd development factor. Let: 

 

bi=2nd to 3rd factor for ith accident year 

yi=3rd report losses for ith accident year 

xi=2nd report losses for ith accident year 

 

The model is then: 

yi=xibi+ei.      (5) 
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The error term ei is assumed to have mean 0 and variance si2.   

bi=bi-1+di.     (6) 

 

The fluctuation di is assumed to have mean 0 and variance ni2, and to be inde-

pendent of the e's. 

 

In this general case the variances could change with each period i. Usually some 

simplification is applied, such as constant variances over time, or constant with 

occasional jumps in the parameter – i.e., occasional large ni’s. 

 

If this model is adopted for simulating loss emergence, the estimation of the fac-

tors from the data can be done using the Kalman filter. 

Questions 5 and 6 

The error structure can be studied and usually reasonably understood from the 

data triangles. The loss estimation method associated with a given error structure 

will be assumed to be maximum likelihood estimation from that structure. Thus 

for normal distributions this is weighted least squares, where the weights are the 

inverses of the variances. For lognormal this is the same, but in logs. 

Identifying Emergence Patterns 
Given a data triangle, what is the process that is generating it? This is useful to 

know for loss reserving purposes, as then reserve estimation is reduced to esti-

mation of the parameters of the generating process. It is even more critical for 

simulation of company results, as the whole process is needed for simulation 

purposes. 

 

Identifying emergence patterns can be approached by fitting different ones to the 

data and then testing the significance of the parameters and the goodness of fit. 

As more parameters often appear to give a better fit, but reduce predictive value, 

a method of penalizing over-parameterization is needed when comparing com-
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peting models. The method proposed here is to compare models based on sum of 

squared residuals divided by the square of the degrees of freedom, i.e., divided 

by the square of observations less parameters.  

 

This measure gives impetus to trying to reduce the number of parameters in a 

given model, e.g., by setting some parameters the same or by identifying a trend 

in the parameters. This seems to be a legitimate exercise in the effort of identify-

ing emergence patterns, as there are likely to be some regularities in the pattern, 

and simplifying the model is a way to uncover them. 

 

Fitting the above models is a straightforward exercise, but reducing the number 

of parameters may be more of an art than a science. Two approaches may make 

sense: top down, where the full model is fit and then regularities among the pa-

rameters sought; and bottom up, where the most simplified version is estimated, 

and then parameters added to compensate for areas of poor fit. 

 

To illustrate this approach, the data triangle of reinsurance loss data first intro-

duced by Thomas Mack will be the basis of model estimation. 

Questions 1 & 2 – Factors and Constant Terms 

Table 1 shows incremental incurred losses by age for some excess casualty rein-

surance. As an initial step, the statistical significance of link ratios and additive 

constants was tested by regressing incremental losses against the previous cumu-

lative losses. In the regression the constant is denoted by a and the factor by b. 

This provides a test of question 1 – dependence of emergence on previous 

emerged, and also one of question 2 – proportional emergence. Here they are be-

ing tested by looking at whether or not the factors and the constants are signifi-

cantly different from zero, rather than by any goodness-of-fit measure. 

 

  Table 1 - Incremental Incurred Losses 
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0 1 2 3 4 5 6 7 8 9 

5012 3257 2638 898 1734 2642 1828 599 54 172 

106 4179 1111 5270 3116 1817 -103 673 535  

3410 5582 4881 2268 2594 3479 649 603   

5655 5900 4211 5500 2159 2658 984    

1092 8473 6271 6333 3786 225     

1513 4932 5257 1233 2917      

557 3463 6926 1368       

1351 5596 6165        

3133 2262         

2063         

 

 Table 2 - Statistical Significance of Link Ratios and Constants 

 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 

`a’ 5113 4311 1687 2061 4064 620 777 3724 

Std a 1066 2440 3543 1165 2242 2301 145 0 

`b’ -0.109 0.049 0.131 0.041 -0.100 0.011 -0.008 -0.197 

std b 0.349 0.309 0.283 0.071 0.114 0.112 0.008 0 

 

Table 2 shows the estimated parameters and their standard deviations. As can be 

seen, the constants are usually statistically significant (parameter nearly double 

its standard deviation, or more), but the factors never are. The lack of signifi-

cance of the factors shows that the losses to emerge at any age d+1 are not pro-

portional to the cumulative losses through age d. The assumptions underlying 

the chain ladder model are thus not met by this data. A constant amount emerg-

ing for each age usually appears to be a reasonable estimator, however.  

 

Figure 1 illustrates this. A factor by itself would be a straight line through the 

origin with slope equal to the development factor, whereas a constant would 

give a horizontal line at the height of the constant. 
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Figure 1 

Although emerged losses are not proportional to previous emerged, they could 

be proportional to ultimate incurred. To test this, the parameterized BF model (2) 

was fit to the triangle. As this is a non-linear model, fitting is a little more in-

volved. A method of fitting the parameters will be discussed, followed by an 

analysis of the resulting fit.  

 

To do the fitting, an iterative method can be used to minimize the sum of the 

squared residuals, where the w,d residual is [qw,d-fdhw]. Weighted least squares 

could also be used if the variances of the residuals are not constant over the tri-

angle. For instance, the variances could be proportional to fdphwq, in which case 

the regression weights would be 1/fdphwq. 

 

A starting point for the f’s or the h’s is needed to begin the iteration. While al-

most any reasonable values could be used, such as all f’s equal to 1/n, conver-

gence will be faster with values likely to be in the ballpark of the final factors. A 

natural starting point thus might be the implied fd’s from the chain ladder meth-

od. For ages greater than 0, these are the incremental age-to-age factors divided 

by the cumulative-to-ultimate factors. To get a starting value for age 0, subtract 

the sum of the other factors from unity. Starting with these values for fd, regres-

sions were performed to find the hw’s that minimize the sum of squared residu-
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als (one regression for each w). These give the best h’s for that initial set of f’s. 

The standard linear regression formula for these h’s simplifies to: 

 hw = ådfdqw,d / ådfd2    (7) 

Even though that gives the best h’s for those f’s, another regression is needed to 

find the best f’s for those h’s. For this step the usual regression formula gives: 

 fd = åwhwqw,d / åwhw2    (8) 

Now the h regression can be repeated with the new f’s, etc. This process contin-

ues until convergence occurs, i.e., until the f’s and h’s no longer change with sub-

sequent iterations. Ten iterations were used in this case, but substantial onver-

gence occurred earlier. The first round of f’s and h’s and those at convergence are 

in Table 3. Note that the h’s are not the final estimates of the ultimate losses, but 

are used with the estimated factors to estimate future emergence. In this case, in 

fact, h(0) is less than the emerged to date. A statistical package that includes non-

linear regression could ease the estimation. 

 

Standard regression assumes each observation q has the same variance, which is 

to say the variance is proportional to fdphwq, with p=q=0. If p=q=1 the weighted 

regression formulas become: 

 hw2 = åd[qw,d2/fd] / ådfd  and 

 fd2 = åw[qw,d2/hw] / åwhw 

 

Table 3 - BF Parameters 
Age d 0 1 2 3 4 5 6 7 8 9 

fd 1st 0.106 0.231 0.209 0.155 0.117 0.083 0.038 0.032 0.018 0.011 

fd ult 0.162 0.197 0.204 0.147 0.115 0.082 0.037 0.030 0.015 0.009 

Year w 0 1 2 3 4 5 6 7 8 9 

hw 1st 17401 15729 23942 26365 30390 19813 18592 24154 14639 12733 

hw ult 15982 16501 23562 27269 31587 20081 19032 25155 13219 19413 

 

For comparison, the development factors from the chain ladder are shown in Ta-

ble 4. The incremental factors are the ratios of incremental to previous cumula-
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tive. The ultimate ratios are cumulative to ultimate. Below them are the ratios of 

these ratios, which represent the portion of ultimate losses to emerge in each pe-

riod. The zeroth period shown is unity less the sum of the other ratios. These fac-

tors were the initial iteration for the fd’s shown above. 

 

Table 4 - Development Factors 
 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6  to 7 7 to 8 8 to 9 

Incremental 1.22 0.57 0.26 0.16 0.10 0.04 0.03 0.02 0.01 

 0 to 9 1 to 9 2 to 9 3 to 9 4 to 9 5 to 9 6  to 9 7 to 9 8 to 9 

Ultimate 6.17 2.78 1.77 1.41 1.21 1.10 1.06 1.03 1.01 

0.162 0.197 0.204 0.147 0.115 0.082 0.037 0.030 0.015 0.009 

 

Having now estimated the BF parameters, how can they be used to test what the 

emergence pattern of the losses is? 

 

A comparison of this fit to that from the chain ladder can be made by looking at 

how well each method predicts the incremental losses for each age after the ini-

tial one. The sum of squared errors adjusted for number of parameters is the 

comparison measure, where the parameter adjustment is made by dividing the 

sum of squared errors by the square of [the number of observations less the 

number of parameters], as discussed earlier. Here there are 45 observations, as 

only the predicted points count as observations. The adjusted sum of squared re-

siduals is 81,169 for the BF, and 157,902 for the chain ladder. This shows that the 

emergence pattern for the BF (emergence proportional to ultimate) is much more 

consistent with this data than is the chain ladder emergence pattern (emergence 

proportional to previous emerged). 

 

The Cape Cod (CC) method was also tried for this data. The iteration proceeded 

similarly to that for the BF, but only a single h parameter was fit for all accident 

years. Now: 

 h = åw,dfdqw,d / åw,dfd2     (9) 
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The estimated h is 22,001, and the final factors f are shown in Table 5. The adjust-

ed sum of squared errors for this fit is 75,409. Since the CC is a special case of the 

BF, the unadjusted fit is of course worse than that of the BF method, but with 

fewer parameters in the CC, the adjustment makes them similar. This formula for 

h is the same as the formula for hw except the sum is taken over all w.  

 

Intermediate special cases could be fit similarly. If, for instance, a single factor 

were sought to apply to just two accident years, the sum would be taken over 

those years to estimate that factor, etc. 

 

        Table 5 - Factors in CC Method 
0 1 2 3 4 5 6 7 8 9 

0.109 0.220 0.213 0.148 0.124 0.098 0.038 0.028 0.013 0.008 

 

This is a case where the BF has too many parameters for prediction purposes. 

More parameters fit the data better, but use up information. The penalization in 

the fit measure adjusts for this problem, and shows the CC to be a somewhat bet-

ter model. Thus the data is consistent with random emergence around an ex-

pected value that is constant over the accident years. 

 

The CC method would probably work even better for loss ratio triangles than for 

loss triangles, as then a single target ultimate value makes more sense. Adjusting 

loss ratios for trend and rate level could increase this homogeneity. 

 

In addition, a purely additive development was tried, as suggested by the fact 

that the constant terms were significant in the original chain ladder, even though 

the factors were not. The development terms are shown in Table 6. These are just 

the average loss emerged at each age. The adjusted sum of squared residuals is 

75,409. This is much better than the chain ladder, which might be expected, as 

the constant terms were significant in the original significance-test regressions 
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while the factors were not. The additive factors in Table 6 differ from those in 

Table 2 because there is no multiplicative factor in Table 6. 

 

  Table 6 - Terms in Additive Chain Ladder 
1 2 3 4 5 6 7 8 9 

4849.3 4682.5 3267.1 2717.7 2164.2 839.5 625 294.5 172 

 

As discussed above, the additive chain ladder is the same as the Cape Cod meth-

od, although it is parameterized differently. The exact same goodness of fit is 

thus not surprising. 

 

Finally, an intermediate BF-CC pattern was fit as an example of reduced parame-

ter BF’s. In this case ages 1 and 2 are assumed to have the same factor, as are ages 

6 and 7 and ages 8 and 9. This reduces the number of f parameters from 9 to 6. 

The number of accident year parameters was also reduced: years 0 and 1 have a 

single parameter, as do years 5 through 9. Year 2 has its own parameter, as does 

year 4, but year 3 is the average of those two. Thus there are 4 accident year pa-

rameters, and so 10 parameters in total. Any one of these can be set arbitrarily, 

with the remainder adjusted by a factor, so there are really just 9. The selections 

were based on consideration of which parameters were likely not to be signifi-

cantly different from each other.  

 

The estimated factors are shown in Table 7. The accident year factor for the last 5 

years was set to 20,000. The other factors were estimated by the same iterative 

regression procedure as for the BF, but the factor constraints change the simpli-

fied regression formula. The adjusted sum of squared residuals is 52,360, which 

makes it the best approach tried. This further supports the idea that claims 

emerge as a percent of ultimate for this data. It also indicates that the various ac-

cident years and ages are not all at different levels, but that the CC is too much of 

a simplification. The actual and fitted values from this, the chain ladder, and CC 
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are in Exhibit 1. The fitted values in Exhibit 1 were calculated as follows. For the 

chain ladder, the factors from Table 4 were applied to the cumulative losses im-

plied from Table 1. For the CC the fitted values are just the terms in Table 6. For 

the BF-CC they are the products of the appropriate f and h factors from Table 7. 

 

Table 7 - BF-CC Parameters 
Age d 0 1 2 3 4 5 6 7 8 9 

fd * 0.230 0.230 0.160 0.123 0.086 0.040 0.040 0.017 0.017 

Year w 0 1 2 3 4 5 6 7 8 9 

hw 14829 14829 20962 25895 30828 20000 20000 20000 20000 20000 

Calendar Year Impacts – Testing Question 3 
One type of calendar year impact is high or low diagonals in the loss triangle. 

Mack suggested a high-low diagonal test which counts the number of high and 

low factors on each diagonal, and tests whether or not that is likely to be due to 

chance. Here another high-low test is proposed: use regression to see if any diag-

onal dummy variables are significant. An actuary will often have information 

about changes in company operations that may have created a diagonal effect. If 

so, this information could lead to choices of modeling methods – e.g., whether to 

assume the effect is permanent or temporary. The diagonal dummies can be used 

to measure the effect in any case, but knowledge of company operations will 

help determine how to use this effect. This is particularly so if the effect occurs in 

the last few diagonals. 

 

A diagonal in the loss development triangle is defined by w+d = constant. Sup-

pose for some given data triangle, the diagonal w+d=7 is found to be 10% higher 

than normal. Then an adjusted BF estimate of a cell might be: 

 

  qw,d=1.1fdhw if w+d=7, and qw,d=fdhw otherwise  (10) 
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1 2 5 4 
3 8 9  
7 10   
7    

 2 1 0 0 0 0 
8 3 0 0 1 0 
10 7 0 0 0 1 
5 0 3 0 1 0 
9 0 11 0 0 1 
4 0 0 8 0 1 

 

The small sample triangle of incremental losses here will be 

used as an example of how to set up diagonal dummies in a 

chain ladder model. The goal is to get a matrix 

of data in the form needed to do a multiple re-

gression. First the triangle (except the first col-

umn) is strung out into a column vector. This is 

the dependent variable. Then columns for the independent variables are added. 

The second column is the cumulative losses at age 0 for the loss entries that are at 

age 1, and zero for the other loss entries. The regression coefficient for this col-

umn would be the 0 to 1 cumulative-to-incremental factor. The next two columns 

are the same for the 1 to 2 and 2 to 3 factors. The last two columns are the diago-

nal dummies. They pick out the elements of the last two diagonals. The coeffi-

cients for these columns would be additive adjustments for those diagonals, if 

significant. 

 

This method of testing for diagonal effects is applicable to many of the emer-

gence models. In fact, if diagonal effects are found significant in chain ladder 

models, they probably are needed in the BF models of the same data, so good-

ness-of-fit tests should be done with those diagonal elements included.  

 

Another popular modeling approach is to consider diagonal effects to be a meas-

ure of inflation (e.g., see Taylor 1977). In a payment triangle this would be a nat-

ural interpretation, but a similar phenomenon could occur in an incurred trian-

gle. In this case the latest diagonal effects might be projected ahead as estimates 

of future inflation. An understanding of what in company operations is driving 

the diagonal effects would help address these issues. 

 

As with the BF model, the parameters of the model with inflation effects, qw,d= 

hwfdgw+d + ew,d, can be estimated iteratively. With reasonable starting values, fix 
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two of the three sets of parameters, fit the third by least squares, and rotate until 

convergence is reached. Alternatively, a non-linear search procedure could be 

utilized. As an example of the simplest of these models, modeling qw,d as just 

6756(0.7785)d gives an adjusted sum of squares of 57,527 for the reinsurance tri-

angle above. This is not the best fitting model, but is better than some, and has 

only two parameters. Adding more parameters to this would be an example of 

the bottom up fitting approach. 

Testing Question 4  - Stability of parameters 

If a pattern of sequences of high and low residuals is found when plotted against 

time, instability of the parameters may be indicated. This can be studied and a 

randomness in the parameters incorporated into the simulation process, e.g., 

through the state-space model.  

 Figure 2 

Figure 2 shows the 2nd to 3rd factor by accident year from a large development 

triangle (data in Exhibit 2) along with its five-term moving average. The moving 

average is the more stable of the two lines, and is sometimes in practice called 

“the average of the last five diagonals.” There is apparent movement of the mean 

factor over time as well as a good deal of random fluctuation around it. There is a 

period of time in which the moving average is as low as 1.1 and other times it is 

as high as 1.8.  
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The state-space model assumes that observations fluctuate around a mean that 

itself changes over time. The degree of random fluctuation is measured by vari-

ance around the mean, and the movement of the mean by its variance over time. 

The interplay of these two variances determines the weights to apply, as in cred-

ibility theory. 

 

The state-space model thus provides underlying assumptions about the process 

by which development changes over time. With such a model, estimation tech-

niques that minimize prediction errors can be developed for the changing devel-

opment case. This can result in estimators that are better than either using all da-

ta, or taking the average of the last few diagonals. For more details on the state 

space models see the Verrall and Zehnwirth references.  

Questions 5 & 6: Variance Assumptions 

Parameter estimation changes depending on the form of the variance. Usually in 

the chain ladder model the variance will plausibly be either a constant or propor-

tional to the previous cumulative or its square. Plotting or fitting the squared re-

siduals as a function of the previous cumulative will usually help decide which 

of these three alternatives fits better. If the squared residuals tend to be larger 

when the explanatory variable is larger, this is evidence that the variance is larg-

er as well.  

 

Another variance test would be for normality of the residuals. Normality is often 

tested by plotting the residuals on a normal scale, and looking for linearity. This 

is not a formal test, but it is often considered a useful procedure. If the residuals 

are somewhat positively skewed, a lognormal distribution may be reasonable. 

The non-linear models discussed are all linear in logs, and so could be much eas-

ier to estimate in that form. However, if some increments are negative, a lognor-
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mal model becomes awkward. The right distribution for the residuals of loss re-

serving models seems an area in which further research would be helpful. 

Conclusion 
The first test that will quickly indicate the general type of emergence pattern 

faced is the test of significance of the cumulative-to-incremental factors at each 

age. This is equivalent to testing if the cumulative-to-cumulative factors are sig-

nificantly different from unity. When this test fails, the future emergence is not 

proportional to past emergence. It may be a constant amount, it may be propor-

tional to ultimate losses, as in the BF pattern, or it may depend on future infla-

tion. 

 

The addition of an additive component may give an even better fit. Reduced pa-

rameter models could also give better performance, as they will be less respon-

sive to random variation. If an additive component is significant, converting the 

triangle to on-level loss ratios may improve the model. Tests of stability and for 

calendar-year effects may lead to further improvements.  

 

Once the emergence pattern has been identified, it can be used both to estimate 

loss reserves, which is then a parameter estimation issue, and to simulate loss 

emergence in a dynamic financial model. 
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