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Abstract 

 
The use of age-to-age factors applied to cumulative losses has been shown to produce 

least-squares optimal reserve estimates when certain assumptions are met. Tests of these 

assumptions are introduced, most of which derive from regression diagnostic methods. 

Failures of various tests lead to specific alternative methods of loss development. 
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TESTING THE ASSUMPTIONS OF AGE-TO-AGE FACTORS  
In his paper Measuring the Variability of Chain Ladder Reserve Estimates (CAS Fo-

rum Spring 1994), Thomas Mack presented the assumptions needed for least-

squares optimality to be achieved by the typical age-to-age factor method of loss 

development (often called “chain ladder”). Mack also introduced several tests of 

those assumptions. His results are summarized below, and then other tests of the 

assumptions are introduced. Also addressed is what to do when the assumptions 

fail. Most of the assumptions, if they fail in a particular way, imply least-squares 

optimality for some alternative method. 

 

The organization of the paper is to first show Mack’s three assumptions and their 

result, then to introduce six testable implications of those assumptions, and fi-

nally to go through the testing of each implication in detail.  

PRELIMINARIES 

Losses for accident year w evaluated at the end of that year will be denoted as 

being as of age 0, and the first accident year in the triangle is year 0. The notation 

below will be used to specify the models. Losses could be either paid or incurred. 

Only development that fills out the triangle is considered. Loss development be-

yond the observed data is often significant but is not addressed here. Thus age ∞ 

will denote the oldest possible age in the data triangle. 

Notation 

c(w,d): cumulative loss from accident year w as of age d 

c(w,∞): total loss from accident year w when end of triangle reached 

q(w,d) : incremental loss for accident year w from d-1 to d 

f(d):  factor applied to c(w,d) to estimate q(w,d+1) 

F(d):  factor applied to c(w,d) to estimate c(w,∞) 
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Assumptions 

What Mack showed was that some specific assumptions on the process of loss 

generation are needed for chain ladder to be optimal. Thus if actuaries find 

themselves in disagreement with one or another of these assumptions, they 

should look for some other method of development that is more in harmony 

with their intuition about the loss generation process. Reserving methods more 

consistent with other loss generation processes will be discussed below.  Mack’s 

three original assumptions are slightly restated here to emphasize the task as one 

of predicting future incremental losses. Note that the losses c(w,d) have an 

evaluation date of w+d. 

 

(1) E[q(w,d+1)|data to w+d] = f(d)c(w,d) 

In words, the expected value of the incremental losses to emerge in the 

next period is proportional to the total losses emerged to date, by accident 

year. Note that in Mack’s definition of the chain ladder, f(d) does not de-

pend on w, so the factor for a given age is constant across accident years. 

Note also that this formula is a linear relationship with no constant term. 

As opposed to other models discussed below, the factor applies directly to 

the cumulative data, not to an estimated parameter, like ultimate losses. 

For instance, the Bornheutter-Ferguson method assumes that the expected  

incremental losses are proportional to the ultimate for the accident year, 

not the emerged to date. 

 

(2) Unless v=w, c(w,d) and c(v,g) are independent for all v, w, d and g. 

This would be violated, for instance, if there were a strong diagonal, when 

all years’ reserves were revised upwards. In this case, instead of just using 

the chain ladder method, most actuaries would recommend eliminating 

these diagonals or adjusting them. Some model-based methods for for-

mally recognizing diagonal effects are discussed below. 
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(3) Var[q(w,d+1)|data to w+d] = a[d,c(w,d)]. 

That is, the variance of the next increment observation is a function of the 

age and the cumulative losses to date. Note that a(.,.) can be any function 

but does not vary by accident year. An assumption on the variance of the 

next incremental losses is needed to find a least-squares optimal method 

of estimating the development factors.  Different assumptions, e.g., differ-

ent functions a(.,.) will lead to optimality for different methods of estimat-

ing the factor f. The form of a(.,.) can be tested by trying different forms, 

estimating the f’s, and seeing if the variance formula holds. There will al-

most always be some function a(…) that reasonably accords with the ob-

servations, so the issue with this assumption is not its validity but its im-

plications for the estimation procedure. 

Results (Mack) 

In essence what Mack showed is that under the above assumptions the chain 

ladder method gives the minimum variance unbiased linear estimator of future 

emergence. This gives a good justification for using the chain ladder in that case, 

but the assumptions need to be tested. Mack assumed that a[d,c(w,d)] = 

k(d)c(w,d), that is he assumed that the variance is proportional to the previous 

cumulative loss, with possibly a different proportionality factor for each age. In 

this case, the minimum variance unbiased estimator of c(w,∞) from the triangle 

of data to date w+d is F(d)c(w,d), where the age-to-ultimate factor 

F(d)=[1+f(d)][1+f(d+1)]…, and f(d) is calculated as: 

 

 f(d) = ∑wq(w,d+1)/ ∑wc(w,d), 

 

where the sum is over the w’s mutually available in both columns (assuming ac-

cident years are on separate rows and ages are in separate columns). Actuaries 
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often use a modified chain ladder that uses only the last n diagonals. This will be 

one of the alternative methods to test if Mack’s assumptions fail. Using only part 

of the data when all the assumptions hold will reduce the accuracy of the estima-

tion, however. 

Extension 

In general, the minimum variance unbiased f(d) is found by minimizing 

∑w[f(d)c(w,d)-q(w,d+1)]2k(d)/a[d,c(w,d)] 

This is the usual weighted least-squares result, where the weights are inversely 

proportional to the variance of the quantity being estimated. Because only pro-

portionality, not equality, to the variance is required, k(d) can be any convenient 

function of d – usually chosen to simplify the minimization. 

For example, suppose a[d,c(w,d)]= k(d)c(w,d)2. Then the f(d) produced by the 

weighted least-squares procedure is the average of the individual accident year d 

to d+1 ratios q(w,d+1)/c(w,d). For a[d,c(w,d)]=k(d), each f(d) regression above is 

then just standard unweighted least squares, so f(d) is the regression coefficient 

∑wc(w,d)q(w,d+1)/∑wc(w,d)2. (See Murphy, Unbiased Loss Development Factors, 

1994 PCAS.) In all these cases, f(d) is fit by a weighted regression, and so regres-

sion diagnostics can be used to evaluate the estimation. In the tests below just 

standard least squares will be used, but in application the variance assumption 

should be reviewed. 

Discussion 

Without going into Mack’s derivation, the optimality of the chain ladder method 

is fairly intuitive from the assumptions. In particular, the first assumption is that 

the expected emergence in the next period is proportional to the losses emerged 

to date. If that were so, then a development factor applied to the emerged to date 

would seem highly appropriate. Testing this assumption will be critical to ex-

ploring the optimality of the chain ladder. For instance, if the emergence were to 
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be found to be a constant plus a percent of emergence to date, then a different 

method would be indicated – namely a factor plus constant development 

method. On the other hand, if the next incremental emergence is proportional to 

ultimate rather than to emerged to date, a Bornheutter-Ferguson type approach 

would be more appropriate. 

 

To test this assumption against its alternatives, the development method that 

leads from each alternative needs to be fit, and then a goodness-of-fit measure 

applied. This is similar to trying a lot of methods and seeing which one you like 

best, but it is different in two respects: (1) each method tested derives from an al-

ternative assumption on the process of loss emergence; (2) there is a specific 

goodness-of-fit test applied. Thus the fitting is a test of the emergence patterns 

that the losses are subject to, and not just a test of estimation methods. 

TESTABLE IMPLICATIONS OF ASSUMPTIONS 

Verifying a hypothesis involves finding as many testable implications of that hy-

pothesis as possible, and verifying that the tests pass. In fact a hypothesis can 

never be fully verified, as there could always be some other test you haven’t 

thought of. Thus the process of verification is sometimes conceived as being 

really a process of attempted falsification, with the currently tentatively accepted 

hypothesis being the strongest (i.e., most easily testable) one not yet falsified. 

(See Popper, Conjectures and Refutations.)   The assumptions (1)-(3) are not di-

rectly testable, but they have testable implications. Thus they can be falsified if 

any of the implications are found not to hold, which would mean that the opti-

mality of the chain ladder method could not be shown for the data in question. 

Holding up under all of these tests would increase the actuary’s confidence in the 

hypothesis, still recognizing that no hypothesis can ever be fully verified. Some 

of the testable implications are: 
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1. Significance of factor f(d). 

2. Superiority of factor assumption to alternative emergence patterns such as: 

(a) linear with constant: E[q(w,d+1)|data to w+d] = f(d)c(w,d)+g(d) 

(b) factor times parameter: E[q(w,d+1)|data to w+d] = f(d)h(w) 

(c) including calendar year effect: E[q(w,d+1)|data to w+d] =f(d)h(w)g(w+d).  

Note that in these examples the notation has changed slightly so that f(d) is a fac-

tor used to estimate q(w,d+1), but not necessarily applied to c(w,d). These alter-

native emergence models can be tested by goodness of fit, controlling for number 

of parameters. 

3. Linearity of model: look at residuals as a function of c(w,d). 

4. Stability of factor: look at residuals as a function of time. 

5. No correlation among columns. 

6. No particularly high or low diagonals. 

 

The remainder of this paper consists of tests of these implications.  

TESTING LOSS EMERGENCE – IMPLICATIONS 1 & 2 

The first four of these implications are tests of assumption (1). Standard diagnos-

tic tests for weighted least squares regression can be used as measures.  

Implication 1: Significance of Factors 

Regression analysis produces estimates for the standard deviation of each pa-

rameter estimated. Usually the absolute value of a factor is required to be at least 

twice its standard deviation for the factor to be regarded as significantly different 

from zero. This is a test failed by many development triangles, which means that 

the chain ladder method is not optimal for those triangles.  

 

The requirement that the factor be twice the standard deviation is not a strict sta-

tistical test, but more like a level of comfort. For the normal distribution this re-
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quirement provides that there is only a probability of about 4.5% of getting a fac-

tor of this absolute value or greater when the true factor is zero. Many analysts 

are comfortable with a factor with absolute value 1.65 times its standard devia-

tion, which could happen about 10% of the time by chance alone. For heavier 

tailed distributions, the same ratio of factor to standard deviation will usually be 

more likely to occur by chance. Thus if a factor were to be considered not signifi-

cant for the normal distribution, it would probably be even less significant for 

other distributions. This approach could be made into a formal statistical test by 

finding the distribution that the factors follow. The normal distribution is often 

satisfactory, but it is not unusual to see some degree of positive skewness, which 

would suggest the lognormal. Some of the alternative models discussed below 

are easier to estimate in log form, so that is not an unhappy finding. 

 

It may be tempting to do the regression of cumulative on previous cumulative 

and test the significance of that factor in order to justify the use of the chain lad-

der. However it is only the incrementals that are being predicted, so this would 

have to be carefully interpreted. In a cumulative-to-cumulative regression, the 

significance of the difference of the factor from unity is what needs to be tested. 

This can be done by comparing that difference to the standard deviation of the 

factor, which is equivalent to testing the significance of the factor in the incre-

mental-to-cumulative regression. Some alternative methods to try when this as-

sumption fails are discussed below. 

Implication 2: Superiority to Alternative Emergence Patterns 

If alternative emergence patterns give a better explanation of the data triangle 

observed to date, then assumption (1) of the chain ladder model is also suspect. 

In these cases development based on the best fitting emergence pattern would be 

a natural option to consider. The sum of the squared errors (SSE) would be a way 

to compare models (the lower the better) but this should be adjusted to take into 
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account the number of parameters used. Unfortunately it appears that how to do 

this is not firmly established.  One possible adjustment is to compare fits by us-

ing the SSE divided by (n-p)2, where n is the number of observations and p is the 

number of parameters. More parameters give an advantage in fitting, but a dis-

advantage in prediction, so such a penalty in adjusting the residuals may be ap-

propriate. A more popular adjustment in recent years is to base goodness of fit 

on the Akaike information criterion, or AIC (see Venables & Ripley). For a fixed 

set of observations, multiplying the SSE by e2p/n can approximate the effect of the 

AIC. The AIC has been criticized as being too permissive of over parameteriza-

tion for large data sets, and the Bayesian information criterion, or BIC, has been 

suggested as an alternative. Multiplying the SSE by np/n would rank models the 

same as the BIC.  As a comparison, if you have 45 observations, the improvement 

in SSE needed to justify adding a 5th parameter to a 4 parameter model is about 

5%, 4½%, and almost 9% respectively, for these three adjustments. In the model 

testing below the sum of squared residuals divided by (n-p)2 will be the test sta-

tistic, but in general the AIC and BIC should be regarded as good alternatives. 

 

Note again that this is not just a test of development methods but is also testing 

to see what hypothesis on the process generating the loss development is most 

consistent with the data in the triangle. 

 

The chain ladder has one parameter for each age, which is less than for the other 

emergence patterns listed in implication 2. This gives it an initial advantage, but 

if the other parameters improve the fit enough, they overcome this advantage. In 

testing the various patterns below, parameters will be fit by minimizing the sum 

of squared residuals. In some cases this will require an iterative procedure. 
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Alternative Emergence Pattern 1: Linear with Constant 

The first alternative mentioned is just to add a constant term to the model. This is 

often significant in the age 0 to age 1 stage, especially for highly variable and 

slowly reporting lines, such as excess reinsurance. In fact, in the experience of 

myself and other actuaries who have reported informally, the constant term has 

often been found to be more statistically significant than the factor itself. If the 

constant is significant and the factor is not, a different development process is 

indicated. For instance in some triangles earning of additional exposure could in-

fluence the 0-to-1 development. It is important in such cases to normalize the tri-

angle as much as possible, e.g. by adjusting for differences among accident years 

in exposure and cost levels (trend). With these adjustments a purely additive 

rather than a purely multiplicative method could be more appropriate. 

 

Again, the emergence assumption underlying the linear with constant method is 

 

E[q(w,d+1)|data to w+d] = f(d)c(w,d)+g(d) 

 

If the constant is statistically significant, this emergence pattern is more strongly 

supported than that underlying the chain ladder. 

Alternative Emergence Pattern 2: Factor Times Parameter 

The chain ladder model expresses the next period’s loss emergence as a factor 

times losses emerged so far. An important alternative suggested by Bornheutter 

and Ferguson (BF) in The Actuary and IBNR, 1972 PCAS, is to forecast the future 

emergence as a factor times estimated ultimate losses. While BF use some exter-

nal measure of ultimate losses in this process, others have tried to use the data 

triangle itself to estimate the ultimate (e.g., see Verrall 1989).. In this paper, mod-

els that estimate emerging losses as a percent of ultimate will be called param-
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eterized BF models, even if they differ from the original BF method in how they 

estimate the ultimate losses. 

 

The emergence pattern assumed by the parameterized BF model is: 

 

E[q(w,d+1)|data to w+d] = f(d)h(w). 

 

That is, the next period expected emerged loss is a lag factor f(d) times an acci-

dent year parameter h(w). The latter could be interpreted as expected ultimate 

for the year, or at least proportional to that. This model thus has a parameter for 

each accident year as well as for each age. (One less actually as you can assume 

the f(d)’s sum to one - which makes h(w) an estimate of ultimate losses. Thus 

multiplying all the f(d)’s , d>0, by a constant and dividing all the h’s by the same 

constant will not change the forecasts.) For reserving purposes there is even one 

fewer parameter as the age 0 losses are already in the data triangle, so f(0) is not 

needed. Thus for a complete triangle with n accident years the BF has 2n-2 pa-

rameters, or twice the number as the chain ladder.  This will result in a penalty to 

goodness of fit, so the BF has to produce much lower fit errors than the chain 

ladder to give a better test statistic. 

 

Testing the parameterized BF emergence pattern against that of the chain ladder 

cannot be done just by looking at the statistical significance of the parameters, as 

it could with the linear plus constant method, as one is not a special case of the 

other. This testing is the role of the test statistic, the sum of squared residuals di-

vided by the square of the degrees of freedom If this statistic is better for the BF 

model, that is evidence that the emergence pattern of the BF is more applicable to 

the triangle being studied. That would suggest that loss emergence for that book 

can be more accurately represented as fluctuating around a proportion of ulti-

mate losses rather than a percentage of previous emerged. 
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Stanard (A Simulation Test of Prediction Errors of Loss Reserve Estimation Techniques, 

PCAS 1985) assumed a loss generation scheme that resulted in the expected loss 

emergence for each period being proportional to the ultimate losses for the pe-

riod. This now can be seen to be the BF emergence pattern. Then by generating 

actual loss emergence stochastically, he tested some loss development methods. 

The chain ladder method gave substantially larger estimation errors for ultimate 

losses than his other methods, which were basically different versions of BF es-

timation. This illustrates how far off reserves can be when one reserving tech-

nique is applied to losses that have an emergence process different from the one 

underlying the technique. 

 

A simulation in accord with the chain ladder emergence assumption would gen-

erate losses at age j by multiplying the simulated emerged losses at age j-1 by a 

factor and then adding a random component. In this manner the random com-

ponents influence the expected emergence at all future ages. This may seem an 

unlikely way for losses to emerge, but it is for the triangles that follow this emer-

gence pattern that the chain ladder will be optimal. The fact that Stanard used 

the simulation method consistent with the BF emergence pattern, and this was 

not challenged by the reviewer, John Robertson, suggests that actuaries may be 

more comfortable with the BF emergence assumptions than with those of the 

chain ladder. Or perhaps it just means that no one would be likely to think of 

simulating losses by the chain ladder method. 

 

An important special case of the parameterized BF was developed by some Swiss 

and American reinsurance actuaries at a meeting in Cape Cod, and is sometimes 

called the Cape Cod method (CC). It is given just by setting h(w) to a single h for 

all accident years. CC seems to have one more parameter than the chain ladder, 

namely h.  However, any change in h can be offset by inverse changes in all the 
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f’s. CC thus has the same number of parameter as the chain ladder, and so its fit 

measure is not as penalized as BF. However a single h requires a relatively stable 

level of loss exposure across accident years. Again it would be necessary to ad-

just for known exposure and price level differences among accident years if us-

ing this method. The chain ladder and BF can handle changes in level from year 

to year as long as the development pattern remains consistent. 

 

The BF model often has too many parameters. The last few accident years espe-

cially are left to find their own levels based on sparse information. Reducing the 

number of parameters, and thus using more of the information in the triangle, 

can often obtain better predictions, especially in predicting the last few years. It 

could be that losses follow the BF emergence pattern, but this is disguised in the 

test statistic due to too many parameters. Thus testing for the alternate emer-

gence pattern should also include testing reduced parameter BF models.  

 

The full BF not only assumes that losses emerge as a percentage of ultimate, but 

also that the accident years are all at different mean levels, and that each age has 

a different percentage of ultimate losses. It could be, however, that several years 

in a row, or all of them, have the same mean level. If the mean changes, there 

could be a gradual transition from one level to another over a few years. This 

could be modeled as a linear progression of accident year parameters, rather 

than separate parameters for each year. Similar process could govern loss emer-

gence. For instance, the 9th through 15th periods could all have the same expected 

percentage development. Finding these relationships and incorporating them in 

the fitting process will help determine what emergence process is generating the 

development. 

 

The CC model can be considered a reduced parameter BF model. The CC has a 

single ultimate value for all accident years, while the BF has a separate value for 
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each year. There are numerous other ways to reduce the number of parameters 

in BF models. Simply using a trend line through the BF ultimate loss parameters 

would use just two accident year parameters in total instead of one for each year. 

Another method might be to group years using apparent jumps in loss levels and 

fit an h parameter separately to each group. Within such groupings it is also pos-

sible to let each accident year’s h parameter vary somewhat from the group aver-

age, e.g., via credibility, or to let it evolve over time, e.g., by exponential smooth-

ing.  

Alternative Emergence Patterns Example 

Table 1 shows incremental incurred losses by age for some excess casualty rein-

surance. As an initial test, the statistical significance of the factors was tested by 

regression of incremental losses against the previous cumulative losses. In the 

regression the constant is denoted by a and the factor by b. This provides a test of 

implication 1 – significance of the factor, and also one test of implication 2 – al-

ternate emergence patterns. In this case the alternate emergence patterns tested 

are factor plus constant and constant with no factor. Here they are being tested 

by looking at whether or not the factors and the constants are significantly differ-

ent from zero, rather than by any goodness-of-fit measure. 

  Table 1 - Incremental Incurred Losses 
0 1 2 3 4 5 6 7 8 9 
5012 3257 2638 898 1734 2642 1828 599 54 172 
106 4179 1111 5270 3116 1817 -103 673 535  
3410 5582 4881 2268 2594 3479 649 603   
5655 5900 4211 5500 2159 2658 984    
1092 8473 6271 6333 3786 225     
1513 4932 5257 1233 2917      
557 3463 6926 1368       
1351 5596 6165        
3133 2262         
2063         
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 Table 2 - Statistical Significance of Factors 
 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 
A 5113 4311 1687 2061 4064 620 777 3724 
std a 1066 2440 3543 1165 2242 2301 145 0 
B -0.109 0.049 0.131 0.041 -0.100 0.011 -0.008 -0.197 
std b 0.349 0.309 0.283 0.071 0.114 0.112 0.008 0 

 

Table 2 shows the estimated parameters and their standard deviations. As can be 

seen, the constants are usually statistically significant (parameter nearly double 

its standard deviation, or more), but the factors never are. The chain ladder as-

sumes the incremental losses are proportional to the previous cumulative, which 

implies that the factor is significant and the constant is not. The lack of signifi-

cance of the factors and the significance of many of the constants both suggest 

that the losses to emerge at any age d+1 are not proportional to the cumulative 

losses through age d.  The assumptions underlying the chain ladder model are 

thus not supported by this data. A constant amount emerging for each age usu-

ally appears to be a reasonable estimator, however.  

 

Figure 1 illustrates this. A factor by itself would be a straight line through the 

origin with slope equal to the de-

velopment factor, whereas a con-

stant would give a horizontal line 

at the height of the constant. As 

an alternative, the parameterized 

BF model was fit to the triangle. 

As this is a non-linear model, fit-

ting is a little more involved. A 

statistical package that includes 

non-linear regression could ease 

the estimation. A method of fitting the parameters without such a package will 

be discussed, followed by an analysis of the resulting fit.  
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To do the fitting, an iterative method can be used to minimize the sum of the 

squared residuals, where the (w,d) residual is [q(w,d)-f(d)h(w)]. Weighted least 

squares could also be used if the variances of the residuals are not constant over 

the triangle. For instance, the variances could be proportional to f(d)ph(w)q for 

some values of p and q, usually 0, 1, or 2, in which case the regression weights 

would be 1/f(d)ph(w)q. 

 

A starting point for the f’s or the h’s is needed to begin the iteration. While al-

most any reasonable values could be used, such as all f’s equal to 1/n, conver-

gence will be faster with values likely to be in the ballpark of the final factors. A 

natural starting point thus might be the implied f(d)’s from the chain ladder 

method. For ages greater than 0, these are the incremental age-to-age factors di-

vided by the cumulative-to-ultimate factors. To get a starting value for age 0, 

subtract the sum of the other factors from unity. Starting with these values for 

f(d), regressions were performed to find the h(w)’s that minimize the sum of 

squared residuals (one regression for each w). These give the best h’s for that ini-

tial set of f’s. The standard linear regression formula for these h’s simplifies to: 

 

 h(w) = ∑df(d)q(w,d) / ∑df(d)2  

 

Even though that gives the best h’s for those f’s, another regression is needed to 

find the best f’s for those h’s. For this step the usual regression formula gives: 

 

 f(d) = ∑wh(w)q(w,d) / ∑wh(w)2 

 

Now the h regression can be repeated with the new f’s, etc. This process contin-

ues until convergence occurs, i.e., until the f’s and h’s no longer change with sub-

sequent iterations. It may be possible that this procedure would converge to a lo-
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cal rather than the global minimum, which can be tested by using other starting 

values. 

 

Ten iterations were used in this case, but substantial convergence occurred ear-

lier. The first round of f’s and h’s and those at convergence are in Table 3. Note 

that the h’s are not the final estimates of the ultimate losses, but are used with the 

estimated factors to estimate future emergence. In this case, in fact, h(0) is less 

than the emerged to date.  As the h’s are unique only up to a constant of propor-

tionality, which can be absorbed by the f’s, it may improve presentations to set 

h(0) to the estimated ultimate losses for year 0. 

 

Standard regression assumes each observation q has the same variance, which is 

to say the variance is proportional to f(d)ph(w)q, with p=q=0. If p=q=1 the 

weighted regression formulas become: 

 

 h(w)2 = ∑d[q(w,d)2/f(d)] / ∑df(d)  and 

 f(d)2 = ∑w[q(w,d)2/h(w)] / ∑wh(w) 

 

Table 3 - BF Parameters 
Age d 0 1 2 3 4 5 6 7 8 9 
f(d) 1st 0.106 0.231 0.209 0.155 0.117 0.083 0.038 0.032 0.018 0.011 
f(d) ult 0.162 0.197 0.204 0.147 0.115 0.082 0.037 0.030 0.015 0.009 
Year w 0 1 2 3 4 5 6 7 8 9 
h(w) 1st 17401 15729 23942 26365 30390 19813 18592 24154 14639 12733 
h(w) ult 15982 16501 23562 27269 31587 20081 19032 25155 13219 19413 

 

For comparison, the development factors from the chain ladder are shown in Ta-

ble 4. The incremental factors are the ratios of incremental to previous cumula-

tive. The ultimate ratios are cumulative to ultimate. Below them are the ratios of 

these ratios, which represent the portion of ultimate losses to emerge in each pe-
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riod. The zeroth period shown is unity less the sum of the other ratios. These fac-

tors were the initial iteration for the f(d)’s shown above. 

Table 4 - Development Factors 
 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6  to 7 7 to 8 8 to 9 
Incremental 1.22 0.57 0.26 0.16 0.10 0.04 0.03 0.02 0.01 
 0 to 9 1 to 9 2 to 9 3 to 9 4 to 9 5 to 9 6  to 9 7 to 9 8 to 9 
Ultimate 6.17 2.78 1.77 1.41 1.21 1.10 1.06 1.03 1.01 
0.162 0.197 0.204 0.147 0.115 0.082 0.037 0.030 0.015 0.009 

 

Having now estimated the BF parameters, how can they be used to test what the 

emergence pattern of the losses is? 

 

A comparison of this fit to that from the chain ladder can be made by looking at 

how well each method predicts the incremental losses for each age after the ini-

tial one. The SSE adjusted for number of parameters will be used as the compari-

son measure, where the parameter adjustment will be made by dividing the SSE 

by the square of [the number of observations less the number of parameters], as 

discussed earlier. Here there are 45 observations, as only the predicted points 

count as observations. The adjusted SSE was 81,169 for the BF, and 157,902 for 

the chain ladder. This shows that the emergence pattern for the BF (emergence 

proportional to ultimate) is much more consistent with this data than is the chain 

ladder emergence pattern (emergence proportional to previous emerged). 

 

The CC method was also tried for this data. The iteration proceeded similarly to 

that for the BF, but only a single h parameter was fit for all accident years. Now: 

 

 h = ∑w,df(d)q(w,d) / ∑w,df(d)2 

 

This formula for h is the same as the formula for h(w) except the sum is taken 

over all w. The estimated h is 22,001, and the final factors f are shown in Table 5. 

The adjusted SSE for this fit is 75,409. Since the CC is a special case of the BF, the 
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unadjusted SSE is necessarily worse than that of the BF method (in this case 59M 

vs. 98M), but with fewer parameters in the CC, the adjustment makes them simi-

lar. These are close enough that which is better depends on the adjustment cho-

sen for extra parameters. The BIC also favors the CC, but the AIC is better for the 

BF. As is often the case, the statistics can inform decision-making but not deter-

mine the decision.  

 

Intermediate special cases could be fit similarly. If, for instance, a single factor 

were sought to apply to just two accident years, the sum would be taken over 

those years to estimate that factor, etc. 

 

        Table 5 - Factors in CC Method 
0 1 2 3 4 5 6 7 8 9 
0.109 0.220 0.213 0.148 0.124 0.098 0.038 0.028 0.013 0.008 
 

This is a case where the BF has too many parameters for prediction purposes. 

More parameters fit the data better, but use up information. The penalty in the fit 

measure adjusts for this problem, and the penalty used finds the CC to be a 

somewhat better model. Thus the data is consistent with random emergence 

around an expected value that is constant over the accident years. 

 

Again, the CC method would probably work even better for loss ratio triangles 

than for loss triangles, as then a single target ultimate value makes more sense. 

Adjusting loss ratios for trend and rate level could increase this homogeneity. 

 

In addition, an additive development was tried, as suggested by the fact that the 

constant terms were significant in the original chain ladder, even though the fac-

tors were not. The development terms are shown in Table 6. These are just the 

average loss emerged at each age. The adjusted sum of squared residuals is 

75,409. This is much better than the chain ladder, which might be expected, as the 



 20

constant terms were significant in the original significance-test regressions while 

the factors were not. The additive factors in Table 6 differ from those in Table 2 

because there is no multiplicative factor in Table 6. 

  Table 6 - Terms in Additive Chain Ladder 
1 2 3 4 5 6 7 8 9 
4849.3 4682.5 3267.1 2717.7 2164.2 839.5 625 294.5 172 
 

Is it a coincidence that the additive chain ladder gives the same fit accuracy as 

the CC? Not really, in that they both estimate each age’s loss levels with a single 

value. Let m(d) denote the additive development amount for age d. As the nota-

tion suggests, this does not vary by accident year. The CC method fits an overall 

h and a factor f(d) for each age such that the estimated emergence for age d is 

f(d)h. Here too the predicted development varies by age  but is a constant for 

each accident year. If you have estimated the CC parameters you can just define 

m(d)=f(d)h. Alternatively, if the additive method has been fit, no matter what h 

is estimated, the f’s can be defined as f(d)h=m(d). As long as the parameters are 

fit by least squares they have to come out the same: if one came out lower, you 

could used the equations in the two previous sentences to get this same lower 

value for the other. The two models have the same age and accident year rela-

tionships and so will always come out the same when fit by least squares. They 

are defined differently, however, and so other methods of estimating the pa-

rameters may come up with separate estimates, as in Stanard (1985). In the re-

mainder of this paper, the models will be used interchangeably.  

 

Finally, an intermediate BF-CC pattern was fit as an example of the possible ap-

proaches of this type. In this case ages 1 and 2 are assumed to have the same fac-

tor, as are ages 6 and 7 and ages 8 and 9. This reduces the number of f parameters 

from 9 to 6. The number of accident year parameters was also reduced: years 0 

and 1 have a single parameter, as do years 5 through 9. Year 2 has its own pa-

rameter, as does year 4, but year 3 is the average of those two. Thus there are 4 
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accident year parameters, and so 10 parameters in total. Any one of these can be 

set arbitrarily, with the remainder adjusted by a factor, so there are really just 9. 

The selections were based on consideration of which parameters were likely not 

to be significantly different from each other.  

 

The estimated factors are shown in Table 7. The factor to be set arbitrarily was 

the accident year factor for the last 5 years, which was set to 20,000. The other 

factors were estimated by the same iterative regression procedure as for the BF, 

but the factor constraints change the simplified regression formula. The adjusted 

sum of squared residuals is 52,360, which makes it the best approach tried. This 

further supports the idea that claims emerge as a percent of ultimate for this 

data. It also indicates that the various accident years and ages are not all at dif-

ferent levels. The actual and fitted values from this, the chain ladder, and CC are 

in Exhibit 1. The fitted values in Exhibit 1 were calculated as follows. For the 

chain ladder, the factors from Table 4 were applied to the cumulative losses im-

plied from Table 1. For the CC the fitted values are just the terms in Table 6. For 

the BF-CC they are the products of the appropriate f and h factors from Table 7. 

The parameters for all the models to this point are summarized in Exhibit 2. 

Table 7 - BF-CC Parameters 
Age d 0 1 2 3 4 5 6 7 8 9 
f(d) * 0.230 0.230 0.160 0.123 0.086 0.040 0.040 0.017 0.017 
Year w 0 1 2 3 4 5 6 7 8 9 
h(w) 14829 14829 20962 25895 30828 20000 20000 20000 20000 20000 

Alternative Emergence Patterns Summary 

The chain ladder assumes that future emergence for an accident year will be 

proportional to losses emerged to date. The BF methods take expected emer-

gence in each period to be a percentage of ultimate losses. This could be inter-

preted as regarding the emerged to date to have a random component that will 

not influence future development. If this is the actual emergence pattern, the 
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chain ladder method will apply factors to the random component, and thus in-

crease the estimation error.  

 

The CC and additive chain ladder meth-

ods assume in effect that years showing 

low losses or high losses to date will have 

the same expected future dollar develop-

ment. Thus a bad loss year may differ 

from a good one in just a couple of emer-

gence periods, and have quite comparable loss emergence in all other periods. 

The chain ladder and the most general form of the BF, on the other hand, assume 

that a bad year will have higher emergence than a good year in most periods. 

 

The BF and chain ladder emergence patterns are not the only ones that make 

sense. Some others will be reviewed when discussing diagonal effects below. 

 

Which emergence pattern holds for a given triangle is an empirical issue. Fitting 

parameters to the various methods and looking at the significance of the parame-

ters and the adjusted sum of squared residuals can test this. 

RESIDUAL ANALYSIS – TESTING IMPLICATIONS 3 & 4 

So far the first two of the six testable implications of the chain ladder assump-

tions have been addressed. Looking at the residuals from the fitting process can 

test the next two implications. 

Implication 3:Test of Linearity - Residuals as Function of Previous 

Figure 2 shows a straight line fit to a curve. The residuals can be seen to be first 

positive, then negative then all positive. This pattern of residuals is indicative of 

Figure 2 
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a non-linear process with a linear fit. The chain ladder model assumes the incre-

mental losses at each age are a linear function of the previous cumulative losses. 

 

 A scatter plot of the incremen-

tal against the previous cum-

ulative, as in Figure 3, can be 

used to check linearity; looking 

for this characteristic non-

linear pattern (i.e., strings of 

positive and negative resi-

duals) in the residuals plotted against the previous cumulative is equivalent. This 

can be tested for each age to see if a non-linear process may be indicated. Finding 

this would suggest that emergence is a non-linear function of losses to date. In 

Figure 3 there are no apparent strings of consecutive positive or negative residu-

als, so non-linearity is not indicated. 

Implication 4: Test of Stability - Residuals Over Time 

If a similar pattern of sequences of high and low residuals is found when plotted 

against time, instability of the factors may be indicated. If the factors appear to be 

stable over time, all the accident years available should be used to calculate the 

development factors, in order to reduce the effects of random fluctuations. When 

the development process is unstable, the assumptions for optimality of the chain 

ladder are no longer satisfied.  A response to unstable factors over time might be 

to use a weighted average of the available factors, with more weight going to the 

more recent years, e.g., just use the last 5 diagonals. A weighted average should 

be used when there is a good reason for it, e.g., when residual analysis shows 

that the factors are changing, but otherwise it will increase estimation errors by 

over-emphasizing some observations and under-emphasizing others. 

 

Figure 3
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Another approach to unstable development would be to adjust the triangle for 

measurable instability. For instance, Berquist and Sherman suggest, in Loss Re-

serve Adequacy Testing: A Comprehensive, Systematic Approach PCAS 1977, testing 

for instability by looking for changes in the settlement rate of claims. They meas-

ured this by looking at the changes in the percentage of claims closed by age. If 

instability is found, the triangle is adjusted to the latest pattern. The adjusted tri-

angle, however, should still be tested for stability of development factors by re-

sidual analysis and as illustrated below. 

 

Figure 4 shows the 2nd to 

3rd factor by accident year 

from a large development 

triangle (data in Exhibit 3) 

along with its five-term 

moving average. The mov-

ing average is the more 

stable of the two lines, and 

is sometimes in practice 

called “the average of the 

last five diagonals.” There 

is apparent movement of 

the factor over time as well 

as a good deal of random fluctuation. There is a period of time in which the mov-

ing average is as low as 1.1 and other times it is as high as 1.8. This is the kind of 

variability that would suggest using the average of recent diagonals instead of 

the entire triangle when estimating factors. This is not suggested due to the large 

fluctuations in factors, but rather because of the changes over time in the level 

the factors are fluctuating around. A lot of variability around a fixed level would 

in fact suggest using all the data. 

0.8
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2nd to 3rd 5-term moving average

Figure 4 
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It is not clear from the data what is causing the moving average factors to drift 

over time. Faced with data like this, the average of all the data would not nor-

mally be used. Grouping accident years or taking weighted averages would be 

useful alternatives. 

 

The state-space model in the Verall and Zehnwirth references provides a formal 

statistical treatment of the types of instability in a data triangle. This model can 

be used to help analyze whether to use all the data, or to adopt some form of 

weighted average that de-emphasizes older data. It is based on comparing the 

degree of instability of observations around the current mean to the degree of in-

stability in the mean itself over time. While this is the main statistical model 

available to determine weights to apply to the various accident years of data, a 

detailed discussion is beyond the scope of this paper.  

INDEPENDENCE – TESTING IMPLICATIONS 5 & 6 

Implications 5 and 6 have to do with independence within the triangle. Mack’s 

second assumption above is that, except for observations in the same accident 

year, the columns of incremental losses need to be independent. He developed a 

correlation test and a high-low diagonal test to check for dependencies. The data 

may have already been adjusted for known changes in the case reserving proc-

ess. For instance, Berquist and Sherman recommend looking at the difference be-

tween paid and incurred case severity trends to determine if there has been 

change in case reserve adequacy, and if there has, adjusting the data accordingly. 

Even after such adjustments, however, correlations may exist within the triangle. 

Implication 5: Correlation of Development Factors 

Mack developed a correlation test for adjacent columns of a development factor 

triangle. If a year of high emergence tends to follow one with low emergence, 
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then the development 

method should take this into 

account. Another correlation 

test would be to calculate 

the sample correlation coef-

ficients for all pairs of col-

umns in the triangle, and 

then see how many of these 

are statistically significant, 

say at the 10% level. The sample correlation for two columns is just the sample 

covariance divided by the product of the sample standard deviations for the first 

n elements of both columns, where n is the length of the shorter column. The 

sample correlation calculation here shows that for the triangle in Table 1 above, 

the correlation of the first two development factors is –57%. 

 

Letting r denote the sample correlation coefficient, define T=r[(n-2)/(1-r2)]1/2. A 

significance test for the correlation coefficient can be made by considering T to be 

t-distributed with n-2 degrees of freedom. If T is greater than the t-statistic for 0.9 

at n-2 degrees of freedom, for instance, then r can be considered significant at the 

10% level. (See Miller & Wichern p. 214.) 

 

 In this example, T=-1.71, which is significant at the 10% level but not at the 5% 

level. This level of significance means that 10% of the pairs of columns could 

show up as significant just by random happenstance. A single correlation at this 

level would thus not be a strong indicator of correlation within the triangle. If 

several columns are correlated at the 10% level, however, there may be a correla-

tion problem. 

 

Year X=0 to 1 Y=1 to 2 (X-EX)2 (Y-EY)2 (X-EX)(Y-EY)

1 0.65 0.32 54.27 0.14 2.78

2 39.42 0.26 986.46 0.19 -13.71

3 1.64 0.54 40.70 0.02 0.98

4 1.04 0.36 48.63 0.11 2.31

5 7.76 0.66 0.07 0.00 0.01

6 3.26 0.82 22.63 0.01 -0.57

7 6.22 1.72 3.24 1.05 -1.85

8 4.14 0.89 15.01 0.04 -0.74

Average 8.02 0.70 146.37 0.20 -1.35

Sample Correlation = -1.35/(146.37*0.20)1/2=-.57 
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To test this further, if m is the number of pairs of columns in the triangle, the 

number that come out significant could be considered a binomial variate in m 

and 0.1, which has standard deviation 0.3m1/2. Thus more than 0.1m+m1/2 sig-

nificant correlations (mean plus 3.33 standard deviations) would strongly sug-

gest there is actual correlation within the triangle. Here the 10% level and 3.33 

standard deviations were chosen for illustration. A single correlation that is sig-

nificant at the 0.1% level would also be indicative of a correlation problem, for 

example. 

 

If there is such correlation, the product of development factors is not unbiased, 

but the relationship E(XY)=(EX)(EY)+cov(X,Y) could be used to correct the prod-

uct, where here X and Y are development factors. 

Implication 6: Significantly High or Low Diagonals 

Mack’s high-low diagonal test counts the number of high and low factors on each 

diagonal, and tests whether or not that is likely to be due to chance. Here another 

high-low test is proposed: use regression to see if any diagonal dummy variables 

are significant. This test also provides alternatives in case the pure chain ladder is 

disindicated. An actuary will often have information about changes in company 

operations that may have created a diagonal effect. If so, this information could 

lead to choices of modeling methods – e.g., whether to assume the effect is per-

manent or temporary. The diagonal dummies can be used to measure the effect 

in any case, but knowledge of company operations will help determine how to 

use this effect. This is particularly so if the effect occurs in the last few diagonals. 

 

A diagonal in the loss development triangle is defined by w+d = constant. Sup-

pose for some given data triangle, the diagonal w+d=7 has been estimated to be 

10% higher than normal. Then an adjusted BF estimate of a cell might be: 
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1 2 5 4
3 8 9
7 10
7

2 1 0 0 0 0
8 3 0 0 1 0
10 7 0 0 0 1
5 0 3 0 1 0
9 0 11 0 0 1
4 0 0 8 0 1

  q(w,d)=1.1f(d)h(w) if w+d=7, and q(w,d)=f(d)h(w) otherwise. 

 

This is an example of a multiplicative diagonal effect. Additive diagonal effects 

can also be estimated, using regression with diagonal dummies. 

 

The small sample triangle of incremental losses here will 

be used as an example of how to set up diagonal dummies 

in a chain ladder 

model. The goal is to get a matrix of data in 

the form needed to do a multiple regression. 

First the triangle (except the first column) is 

strung out into a column vector. This is the dependent variable. Then columns 

for the independent variables are added. The second column is the cumulative 

losses at age 0 for the loss entries that are at age 1, and zero for the other loss en-

tries. The regression coefficient for this column would be the 0 to 1 cumulative-

to-incremental factor. The next two columns are the same for the 1 to 2 and 2 to 3 

factors. The last two columns are the diagonal dummies. They pick out the ele-

ments of the last two diagonals. The coefficients for these columns would be ad-

ditive adjustments for those diagonals, if significant. 

 

This method of testing for diagonal effects is applicable to many of the  emer-

gence models. In fact, if diagonal effects are found to be significant in chain lad-

der models, they probably are needed in the BF models of the same data. Thus 

tests of the chain ladder vs. BF should be done with the diagonal elements in-

cluded.  Some examples are given in the Appendix. Another popular modeling 

approach is to consider diagonal effects to be a measure of inflation (e.g., see 

Taylor 1977). In a payment triangle this would be a natural interpretation, but a 

similar phenomenon could occur in an incurred triangle. In this case the latest 

diagonal effects might be projected ahead as estimates of future inflation. An un-



 29

derstanding of what in company operations is driving the diagonal effects would 

help address these issues. 

 

This approach incorporates diagonal effects right into the emergence model. For 

instance, an emergence model might be: 

 

E[q(w,d+1)|data to w+d] = f(d)g(w+d). 

 

Here g(w+d) is a diagonal effect, but every diagonal has such a factor. The usual 

interpretation is that g measures the cumulative claims inflation applicable to 

that diagonal since the first accident year. It would even be possible to add acci-

dent year effects h(w) as well, e.g., 

 

E[q(w,d+1)|data to w+d] = f(d)h(w)g(w+d). 

 

There are clearly too many parameters here, but a lot of them might reasonably 

be set equal. For instance, the inflation might be the same for several years, or 

several accident years might be at the same level. Note that since g is cumulative 

inflation, a constant inflation level could be achieved by setting g(w+d)= (1+j)w+d. 

Then j is the only inflation parameter to be estimated.  

 

The age and accident year parameters might also be able to be written as trends 

rather than individual factors. If f(d)= (1+i)d and h(w)=h*(1+k)w, then the model 

reduces to four parameters h, i, j, and k. However it would be more usual to need 

more parameters than this, possibly written as changing trends. That is, i, j, and k 

might be constant for some periods, then change for others. Note that if they are 

constant for all periods, the estimator h(1+i)d(1+j)w+d(1+k)w is 

h(1+i+j+ij)d(1+k+j+jk)w, which eliminates the parameter j, as i becomes i+j+ij and 

k becomes k+j+jk.  
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It might be better to start without the accident year trend and keep the calendar 

year trend, especially if the triangle has been normalized for accident year 

changes. The model for the (w,d) cell would then be h(1+i)d(i+j)w+d, which has 

just three parameters.  

 

As with the BF model, the parameters of models with diagonal trends can be es-

timated iteratively. With reasonable starting values, fix two of the three sets of 

parameters, and fit the third by least squares, and rotate until convergence is 

reached. Alternatively, a non-linear search procedure could be utilized. As an ex-

ample of the simplest of these models, modeling E[q(w,d+1)|data to w+d] as just 

6756(0.7785)d gives an adjusted sum of squares of 57,527 for the reinsurance tri-

angle above. This is not the best fitting model, but is better than some, and has 

only two parameters h=6756 and i=-0.2215. 

 

Calendar year trend accounts for inflation in the time between loss occurrence 

and loss settlement, which many actuaries believe has an impact on ultimate 

losses. Whether it is influencing a given loss triangle can be investigated by test-

ing for diagonal effects. 

CONCLUSION 

The first test that will quickly indicate the general type of emergence pattern 

faced is the test of significance of the cumulative-to-incremental factors at each 

age. This is equivalent to testing if the cumulative-to-cumulative factors are sig-

nificantly different from unity. When this test fails, the future emergence is not 

proportional to past emergence. It may be a constant amount, or it may be pro-

portional to ultimate losses, as in the BF pattern. 
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When this test is passed, the addition of an additive component may give an 

even better fit. Even when the test is failed, including an additive term may make 

the factor significant. In either case the BF emergence pattern may still produce a 

better fit. Reduced parameter BF models could also give better performance, as 

they will be less responsive to random variation. If an additive component is sig-

nificant, converting the triangle to on-level loss ratios may improve the forecasts. 

 

Tests of stability and for diagonal effects may lead to further improvements in 

the model. However, if the emergence is stable, excluding data by using only the 

last n diagonals will lead to higher estimation errors on average. 

 

An actuary might advise “If the chain ladder doesn’t work, try Bornheutter-

Ferguson.” This is a reasonable conclusion, with the interpretation of “doesn’t 

work” to mean “fails the assumptions of least squares optimality,” and “try” to 

mean “test the underlying assumptions of.”  
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APPENDIX  – DIAGONAL EFFECTS IN BF MODELS 

As an example, a test for diagonal effects in the CC model was made in the rein-

surance triangle as follows. The CC is the same as the additive chain ladder, so 

can be expressed as a linear model. This can be estimated via a single multiple 

regression in which the dependent variable is the entire list of incremental losses 

for ages 1 to 9 and all accident years - 45 items in all. That is, the triangle beyond 

age 0 is strung out into a single vector. Age and diagonal dummy independent 

variables can be established in a design matrix to pick out the right elements of 

the parameter vector of age and diagonal terms to estimate each incremental loss 

cell. For the additive chain ladder, the column dummy variables will be 1 or 0, as 

opposed to cumulative or 0 in the chain ladder example. Then the coefficient of 

that column will be the additive element for the given age. 

 

The later columns of the design matrix would be diagonal dummies, as in the 

chain ladder example. By doing a multiple linear regression for the incremental 

loss column in terms of the age and diagonal dummies, additive terms by age 

and by diagonal will be estimated. The regression can tell which terms are statis-

tically significant, and the others can be dropped from the specification. 

 

With the reinsurance triangle tested above, the first three diagonals turned out to 

be lower than the others, as was the last diagonal. Also, the first two ages were 

not significantly different from each other, nor were the last four. This produced 

a model with five age parameters and two diagonal parameters - one for the first 

three diagonals combined, and one for the last diagonal. The parameters were as 

in Table 8: 

 

         Table 8 - Terms in Additive Chain Ladder with Diagonal Effects 
Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Diag 1-3 Diag 9 
5569.0 5569.0 3739.2 2881.8 2361.1 993.3 993.3 993.3 993.3 -2319.9 -984.7 



 33

 

The sum of squared residuals for this model is 49673.4 when adjusted for seven 

parameters used. This is considerably better than the model without diagonal ef-

fects. The multiple regression found the diagonals to be statistically significant 

and adding them to the model improved the fit. 

 

A problem with the diagonal analysis is how to use them in forecasting. One rea-

son for diagonal effects is a change in company practice, particularly in the 

claims handling process. If the age effects are considered the dominate influence 

with occasional distortion by diagonal effects, then including diagonal dummy 

variables will give better estimates for the underlying age terms. Then these, but 

not the diagonal effects, would be used in forecasting.  

 

Having identified the significant diagonal effects through linear regression, it 

may be more reasonable to convert them to multiplicative effects through non-

linear regression. The model could be of the form: 

 

  q(w,d)=f(d)g(w+d) 

 

where f(d) is the additive age term for the dth age, and g(w+d) is the factor for the 

w+dth diagonal. Again this can be estimated iteratively by fixing the f’s to esti-

mate the g’s by linear regression, then fixing those g’s to estimate the next itera-

tion of f’s, until convergence is reached. The previous model was refit with the 

diagonals as factors with the result in Table 9. This had a slightly better adjusted 

sum of squared residuals of 49034.8. 

 

Table 9 - Additive Chain Ladder with Multiplicative Diagonal Effects 
Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Diag 1-3 Diag 9 
5692.3 5692.3 3823.0 2816.1 2416.7 672.1 672.1 672.1 672.1 .5598 .6684 
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Diagonal factors can be used in conjunction with accident year factors as in: 

 

  q(w,d)=f(d)g(w+d)h(w). 

 

As an example, a factor was added to the above model to represent accident 

years 3 and 4, and the 4th age term was forced to be the average of the 3rd and 5th. 

 

Table 10-Additive Chain Ladder with Multiplicative Diagonal & AY Effects 
Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Diag 1-3 Diag 9 AY 3-4 
5135.6 5135.6 3464.7 2730.1 1995.4 660.1 660.1 660.1 660.1 .6201 .7225 1.2672 
 

The adjusted sum of squared residuals came down to 44700.9, which is consid-

erably better than the previous best fitting model, and almost twice as good as in 

the original BF model, which in turn was almost twice as good as the chain lad-

der. It appears that accident year effects and diagonal effects are significant in 

this data. The fit is shown as the last section of Exhibit 1. The numerous examples 

fit to this data were for the sake of illustration. Some models of the types dis-

cussed may still fit better than the particular ones shown here. 

 

 



EXHIBIT 1- COMPARATIVE FITS 

 

Chain Ladder 
 1 2 3 4 5 6 7 8 9 
Actual 3257 2638 898 1734 2642 1828 599 54 172 
Fit 6101 4705 2846 1912 1350 656 580 296 172 
% Error 87% 78% 217% 10% -49% -64% -3% 448% 0% 
Actual 4179 1111 5270 3116 1817 -103 673 535  
Fit 129 2438 1408 1728 1374 632 499 257  
% Error -97% 119% -73% -45% -24% -714% -26% -52%  
Actual 5582 4881 2268 2594 3479 649 603   
Fit 4151 5116 3619 2614 1868 900 736   
% Error -26% 5% 60% 1% -46% 39% 22%   
Actual 5900 4211 5500 2159 2658 984    
Fit 6883 6574 4113 3444 2336 1057    
% Error 17% 56% -25% 60% -12% 7%    
Actual 8473 6271 6333 3786 225     
Fit 1329 5442 4131 3591 2588     
% Error -84% -13% -35% -5% 1050%     
Actual 4932 5257 1233 2917      
Fit 1842 3667 3053 2095      
% Error -63% -30% 148% -28%      
Actual 3463 6926 1368       
Fit 678 2287 2856       
% Error -80% -67% 109%       
Actual 5596 6165        
Fit 1644 3953        
% Error -71% -36%        
Actual 2262         
Fit 3814         
% Error 69%         
          
CC 
 1 2 3 4 5 6 7 8 9 
Actual 3257 2638 898 1734 2642 1828 599 54 172 
Fit 4364 3746 2287 1631 1082 336 188 59 17 
% Error 34% 42% 155% -6% -59% -82% -69% 9% -90% 
Actual 4179 1111 5270 3116 1817 -103 673 535  
Fit 4364 3746 2287 1631 1082 336 188 59  
% Error 4% 237% -57% -48% -40% -426% -72% -89%  
Actual 5582 4881 2268 2594 3479 649 603   
Fit 4364 3746 2287 1631 1082 336 188   
% Error -22% -23% 1% -37% -69% -48% -69%   
Actual 5900 4211 5500 2159 2658 984    
Fit 4364 3746 2287 1631 1082 336    
% Error -26% -11% -58% -24% -59% -66%    
Actual 8473 6271 6333 3786 225     
Fit 4364 3746 2287 1631 1082     
% Error -48% -40% -64% -57% 381%     
Actual 4932 5257 1233 2917      
Fit 4364 3746 2287 1631      
% Error -12% -29% 85% -44%      
Actual 3463 6926 1368       
Fit 4364 3746 2287       
% Error 26% -46% 67%       
Actual 5596 6165        
Fit 4364 3746        
% Error -22% -39%        
Actual 2262         
Fit 4364         
% Error 93%         
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BF-CC 
 1 2 3 4 5 6 7 8 9 
Actual 3257 2638 898 1734 2642 1828 599 54 172 
Fit 3411 3411 2373 1824 1275 593 593 252 252 
% Error 5% 29% 164% 5% -52% -68% -1% 367% 47% 
Actual 4179 1111 5270 3116 1817 -103 673 535  
Fit 3411 3411 2373 1824 1275 593 593 252  
% Error -18% 207% -55% -41% -30% -676% -12% -53%  
Actual 5582 4881 2268 2594 3479 649 603   
Fit 4821 4821 3354 2578 1803 838 838   
% Error -14% -1% 48% -1% -48% 29% 39%   
Actual 5900 4211 5500 2159 2658 984    
Fit 5956 5956 4143 3185 2227 1036    
% Error 1% 41% -25% 48% -16% 5%    
Actual 8473 6271 6333 3786 225     
Fit 7090 7090 4932 3792 2651     
% Error -16% 13% -22% 0% 1078%     
Actual 4932 5257 1233 2917      
Fit 4600 4600 3200 2460      
% Error -7% -12% 160% -16%      
Actual 3463 6926 1368       
Fit 4600 4600 3200       
% Error 33% -34% 134%       
Actual 5596 6165        
Fit 4600 4600        
% Error -18% -25%        
Actual 2262         
Fit 4600         
% Error 103%         
 
 
Additive with Multiplicative Diagonals and Accident Years
 1 2 3 4 5 6 7 8 9 
Actual 3257 2638 898 1734 2642 1828 599 54 172 
Fit 3185 3185 2148 2730 1995 660 660 660 477 
% Error -2% 21% 139% 57% -24% -64% 10% 1122% 177% 
Actual 4179 1111 5270 3116 1817 -103 673 535  
Fit 3185 3185 3465 2730 1995 660 660 477  
% Error -24% 187% -34% -12% 10% -741% -2% -11%  
Actual 5582 4881 2268 2594 3479 649 603   
Fit 4036 6508 4390 3460 2529 836 604   
% Error -28% 33% 94% 33% -27% 29% 0%   
Actual 5900 4211 5500 2159 2658 984    
Fit 6508 6508 4390 3460 2529 604    
% Error 10% 55% -20% 60% -5% -39%    
Actual 8473 6271 6333 3786 225     
Fit 5136 5136 3465 2730 1442     
% Error -39% -18% -45% -28% 541%     
Actual 4932 5257 1233 2917      
Fit 5136 5136 3465 1972      
% Error 4% -2% 181% -32%      
Actual 3463 6926 1368       
Fit 5136 5136 2503       
% Error 48% -26% 83%       
Actual 5596 6165        
Fit 5136 3710        
% Error -8% -40%        
Actual 2262         
Fit 3710    
% Error 64%         
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EXHIBIT 2- SUMMARY OF PARAMETERS 
 0 1 2 3 4 5 6 7 8 9 
BF f(d) 0.162 0.197 0.204 0.147 0.115 0.082 0.037 0.030 0.015 0.009 
BF h(w)  15982 16501 23562 27269 31587 20081 19032 25155 13219 19413 
CC f(d)  0.109 0.220 0.213 0.148 0.124 0.098 0.038 0.028 0.013 0.008 
Additive Chain     - 4849.3 4682.5 3267.1 2717.7 2164.2 839.5 625 294.5 172 
BF-CC f(d)     - 0.230 0.230 0.160 0.123 0.086 0.040 0.040 0.017 0.017 
BF-CC h(w) 14829 14829 20962 25895 30828 20000 20000 20000 20000 20000 

 

EXHIBIT 3 - 2ND TO 3RD FACTORS FROM LARGE TRIANGLE 
2nd to 3rd --> 1.81 1.60 1.41 2.29 2.25 1.38 

1.36 1.07 1.60 0.89 1.42 0.99 1.01 
1.03 1.02 1.35 1.21 1.28 1.51 1.17 
2.00 0.98 1.21 1.24 1.79 1.32 1.48 
1.51 1.01 1.51 1.06 1.60 1.10 1.11 
2.20 2.00 1.50 2.20 1.19 1.28 1.52 
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