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Abstract  

Many loss reserving models are over-parameterized yet ignore calendar-year (diagonal) effects. Venter [1] illus-
trates techniques to deal with these problems in a regression environment. Venter [2] explores distributional ap-
proaches for the residuals. Gluck [3] shows that systematic effects can increase the reserve runoff ranges by more 
than would be suggested by models fitted to the triangle data alone. Quarg and Mack [4] show how to get more 
information into the reserve estimates by jointly using paid and incurred data.  
 
This paper uses the basic idea and data from [4] and the methods of [1] to build simultaneous regression models 
of the paid and incurred data, including diagonal effects and eliminating non-significant parameters. Then alter-
native distributions of the residuals are compared in order to find an appropriate residual distribution. To get a 
runoff distribution, parameter and process uncertainty are simulated from the fitted model. The methods of 
Gluck [3] are then applied to recognize further effects of systematic risk.  
 
Once the final runoff distribution is available, a possible application is estimating the market value pricing of the 
reserves. Here this is illustrated using probability transforms, as in Wang [5]. 
 
Keywords. Reserving Methods; Reserve Variability; Uncertainty and Ranges, Fair Value, Probability Transforms, 
Bootstrapping and Resampling Methods, Generalized Linear Modeling. 

             

1 INTRODUCTION 

Actuaries have used many methods for reconciling reserve estimates from paid and incurred tri-

angles for decades, but formal modeling of paid and incurred simultaneously appears to have begun 

with Halliwell [6]. His approach was to fit regression models to both data triangles with constraints 

on the coefficients of both models. More recently Quarg and Mack [4] argue that a high paid-to-

incurred ratio for an accident year/lag combination is suggestive of higher-than-average incurred 

development and lower-than-average paid development in the next period. For instance, some paid 

factors compared to incurred/paid ratios from 

http://www.actuaries.org/ASTIN/Colloquia/Zurich/Mack_presentation.pdf are reproduced in 

Figure 1. In [4] the development factors for paid and incurred are adjusted using these ratios. The 

formulas are available in Mack [7], who also provides a comparable adjustment for multiplicative 

cross-classified models. 

Verdier and Klinger [8] suggest a modified scheme that recognizes that the impact of the in-

curred/paid ratios reduces in later stages of development. They also calculate the variance of the re-
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sult, and suggest a multi-line extension. Jedlicka [9] studies alternative estimation procedures, and 

outlines a model of paid and unpaid losses instead of paid and incurred, where unpaid = incurred – 

paid. 

Figure 1 – Individual Paid Development Factors as a Function of Incurred/Paid Ratio 

The current paper models paid and incurred triangles using a regression framework, but does not 

fix the explanatory variables in advance. Rather it is left to the modeler to decide, based on regres-

sion diagnostics, which variables best explain each triangle’s observations.  The regressions are set 

up with incremental losses as the dependent variable, since these are the new elements that need ex-

planation at each lag. Previous incurred, paid, and unpaid losses, cumulative or incremental, are al-

lowed as independent variables for both triangles. Also diagonal dummies are allowed, in case there 

are diagonal (i.e., calendar year) effects in the triangles. None of the papers cited above include cal-

endar-year effects, although these are common in development triangles. 

Regression modeling is both an art and a science. It is not a model, but a way to build models. 

Here it is applied to building models of loss development triangles, but many of the issues are more 

general. The key issue in building regression models is what variables to include. With generalized 

linear models, another issue becomes what distribution best describes the residuals, and non-linear 

functions of the regression result become possible. 

One criterion for evaluating regression models is the significance of the variables. Typically sig-

nificance at the 5% level is sought, which is often close to requiring that the estimate be at least 
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twice its standard error. Sometimes this is relaxed a bit, perhaps to the 10% level. Another useful 

statistic is the standard error of the regression. That incorporates a penalty for additional parameters, 

so can increase when insignificant variables are added. Usually variables significant at even the 10% 

level will improve the standard error. The adjusted-R2 is similarly penalized but it can be difficult to 

tell if a slight increase is worthwhile. Also there seems to be some ambiguity as to how it is defined 

for no-constant regressions, which are common in reserve analysis. 

These ideas are used to build and apply regression models for reserves when both paid and in-

curred triangles are available. The data for the continuing example for this paper consists of Tables 1 

and 2 from Quarg and Mack [4], and Table 3, which is their difference. 

Table 1 – Paid Cumulative Losses 

Acc. / Dev 0 1 2 3 4 5 6 

0 576 1804 1970 2024 2074 2102 2131 
1 866 1948 2162 2232 2284 2348  
2 1412 3758 4252 4416 4494  
3 2286 5292 5724 5850  
4 1868 3778 4648  
5 1442 4010  
6 2044   

 

Table 2 – Incurred Cumulative Losses 

Acc. / Dev 0 1 2 3 4 5 6 

0 978 2104 2134 2144 2174 2182 2174 
1 1844 2552 2466 2480 2508 2454  
2 2904 4354 4698 4600 4644  
3 3502 5958 6070 6142  
4 2812 4882 4852  
5 2642 4406  
6 5022   

Quarg and Mack suggest that using paid and incurred triangles together can help reconcile their 

differences and improve the reserve estimates from both. In his discussion at the 2003 ASTIN Col-

loquium in Berlin, Mack suggested that this could also be done in a regression setting, where both 

the paid and incurred losses could be used in the regressions for either. This paper follows up on 

that suggestion, also incorporating the methods of Venter [1] to eliminate statistically insignificant 

variables and to incorporate any diagonal effects that may be in the data. Alternative distributions 
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for the residuals are also fit. These are the topics of section 2. 

Table 3 – Losses Estimated to Be Unpaid at Year-End  

Acc. / Dev 0 1 2 3 4 5 6

0 402 300 164 120 100 80 43
1 978 604 304 248 224 106  
2 1492 596 446 184 150   
3 1216 666 346 292    
4 944 1104 204     
5 1200 396      
6 2978       

 

Section 3 addresses the issue of runoff ranges arising from the models developed in section 2. 

Section 4 widens the runoff ranges to include systematic risk, as discussed by Gluck [3]. Section 5 

discusses uses for the resulting distribution, and in particular proposes a method to use the runoff 

distribution to estimate the value of the reserves. 

2 BUILDING MODELS 

2.1 Exploratory Analysis 
To paraphrase Yogi Berra, you can see a lot about your data just by observing it. The starting 

point of building a regression model is to explore the relationships that may be in the data. This is 

what makes this approach difficult to reduce to a strict algorithm, however. Some of the steps that 

can be used in looking at paid and incurred development triangles are outlined below. 

Modeling paid losses as a function of paid and incurred could also include using unpaid losses as 

an explanatory variable, as unpaid is just the difference between incurred and paid. The first step in 

this analysis is to look at the data and explore relationships that may exist. 

One thing that stands out in the unpaid triangle is that the lag 0 loss for the most recent year is 

more than double that of any previous year. The incurred is also at an unprecedented level, but the 

paid is not. That raises a question as to whether or not the latest year represents a significant increase 

in exposure, or is just an unusual fluctuation. The paid chain ladder estimate for ultimate for year 6 is 

6128, compared to 8429 for incurred development, or a difference of 2301. Usually an analyst would 

know more about the business reasons for such a difference. For instance, there could have been a 

significant increase in premium volume, or a major loss event, or, on the other hand, a change in 
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reserving methodology that does not affect paid losses. Without such background, only historical 

data patterns can be used on this point, even though it is quite a bit out of the range of historical 

observations. 

The paid losses could be modeled as a function of the previous incurred, paid, or outstanding, or 

some combination of those. Here the incremental paid losses at each lag are modeled, as that is the 

new information at that lag. To start the analysis, the correlations of the paid losses with the previ-

ous unpaid and the previous cumulative paid and incurred for the continuing example are shown in 

Table 4. 

Table 4 – Correlation % for Incremental Paid Losses with Previous Cumulative Losses 

Incremental Paid at Lag with: Incurred Paid Unpaid

Paid at Lag 1 88 84 70 
Paid at Lag 2 68 57 92 

Table 4 shows that the lag1 incremental paids correlate most strongly with the previous in-

curreds, while at lag 2, the correlation is strongest with previous unpaid. At later lags (not shown) 

the unpaid continue to be strong predictors of the next incremental payments, and interestingly 

enough, after a few years the percentage of unpaid that is paid in the next year is fairly steady, as 

shown in Table 5, which is calculated as the sum of paid divided by the sum of previous unpaid col-

umn by column. The high factor at lag 1 reflects the continuing reporting of claims after lag 0. The 

similar factors after lag 2 suggest that only one parameter will be needed for the later lags. 

Table 5 – Average Paid at Each Lag as Factor Times Previous Unpaid (Sum/Sum) 

Lag 1 2 3 4 5 6 

Percent 1.95 0.67 0.33 0.33 0.28 0.36
Since unpaid losses are a strong predictor of the next period’s paid losses, a model for projecting 

future unpaid is needed to fill out the triangles. Unpaid can be calculated from models for incurred 

and paid losses, or could be modeled directly, say by expressing expected unpaid as a factor times 

previous unpaid.  

In the continuing example, the unpaid losses at lags 1 and 2 have a stronger correlation with pre-

vious cumulative paid losses than with previous incurred losses (61% vs. 52% for lag 1 and 47% vs. 

42% for lag 2). Preliminary regressions indicated that for lag 1, current incremental paid was signifi-

cant, but not for lag 2. Also a constant term was significant for lag 1. 

For the later lags, the fairly constant ratio of paid to previous unpaid would suggest the same for 
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unpaid to previous unpaid. Due to changing incurred development, this was fairly noisy, however. 

Table 6 shows the unpaid losses at each later lag as a percentage of the unpaid at the previous lag. 

There is no clear trend, so it may work to model these all as a single constant percentage, especially 

given that pattern for paid losses. 

Table 6 – Unpaid Losses as a Percent of Previous Unpaid 

Acc. / Dev 3 4 5 6 

0 73 83 80 54
1 82 90 47  
2 41 82   
3 84    

2.2 Regression Analysis 
The entire triangle can be set up as a single large regression analysis, either for paid or unpaid 

losses. This is in effect a series of regressions combined into a single error structure. As an example, 

for paid losses, the dependent and independent variables for a trial regression are shown in Table 7. 

This is to explore the structure of the data, but depending on the patterns in the residuals other re-

gressions may be needed to find better models. A reasonable starting point is ordinary multiple re-

gression, which assumes constant variance of the residuals (homoscedasticity). Even though the re-

siduals are not likely to be constant here, as the small increments at the end of the triangle will 

probably have smaller residuals, such heteroscedasticity usually does not affect the regression coeffi-

cients much, although it does affect the overall predictive error distribution.  

The coefficients for the three variables in this regression are: 0.818, 0.696, and 0.325, with stan-

dard errors of 0.033, 0.131, and 0.264. Thus the first two variables are significant but the third is not. 

Even though all the lags have similar ratios of paid to previous unpaid on average, the individual ra-

tios are enough different to reduce the significance.  

Table 7 – Dependent and Independent Variables for Paid Regression 

Paid Increments Previous Incurred Previous Unpaid Previous Unpaid 

1228 978 0 0 
1082 1844 0 0 
2346 2904 0 0 
3006 3502 0 0 
1910 2812 0 0 
2568 2642 0 0 

166 0 300 0 
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214 0 604 0 
494 0 596 0 
432 0 666 0 
870 0 1104 0 
54 0 0 164 
70 0 0 304 

164 0 0 446 
126 0 0 346 
50 0 0 120 
52 0 0 248 
78 0 0 184 
28 0 0 100 
64 0 0 224 
29 0 0 80 

There are also diagonal effects in the residuals. The jth diagonal is the one with row number plus 

column number = j. It also has j elements. The sum of the residuals by diagonal and number of 

positive residuals are in Table 8. The residuals by diagonal are graphed in Figure 2. Each diagonal 

can be seen to be quite biased. 

Table 8 – Sum of Residuals and Number of Positive Residuals by Diagonal  

Diagonal 1 2 3 4 5 6
Sum 427.5 −470.2 −236.8 200.9 −437.3 532.8
# > 0 1 0 1 3 1 5 

There appear to be strong diagonal effects, coming in pairs of years, so offsetting each other over 

time. Dummy variables can be put in to model diagonal effects. Putting in dummies that are 0 or 1 

would give additive effects for each diagonal – essentially adding or subtracting a positive constant 

for each cell on the diagonal. However, because the incremental paids are of such different sizes, 

some scaling of diagonal effects would be desirable. For modeling calendar-year effects, it is often 

more convenient to work with logs of losses, so the effects are automatically multiplicative, as in 

Barnett and Zehnwirth [10].  

Figure 2 
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Here another method was used to create scaling in the diagonal effects. Since there is only one 

positive independent observation for each dependent observation in Table 7, and the independent 

and dependent variables all scale in a similar way, setting the dummy for each dependent variable 

equal to the positive independent variable would have a scaling effect. Also making a single dummy 

for each pair of diagonals, with opposite signs on the two diagonals, would reduce the number of 

variables, possibly without harming the goodness of fit. The matrix of dependent and independent 

variables for this is in Table 9. 

For instance, the variable “d 6 – 5” is the dummy variable for diagonals 5 and 6. The observations 

in that column consist of the value of the independent variable for diagonal 6, its negative for diago-

nal 5, and 0 elsewhere. The (positive) coefficient for this variable will thus produce a reduction in the 

fitted values for diagonal 5 and an increase in the values for diagonal 6. This will not be an additive 

constant, but will be to a large extent scaled to the value of the increment being fitted. The other 

diagonal dummies work the same way. 

The coefficients (not shown) come out quite similar to those for the regression with no diagonal 

elements, but now all are significant. The standard error of the regression has gone down from 206.6 

for the regression without the diagonals to 73.4 with the diagonal dummies. The standard error is 

penalized for the number of variables, so is a good test to see if adding a variable is helpful. Some-

times regression modelers will keep in a variable that is only weakly significant if it improves the 

overall standard error. 
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Table 9 – Dependent and Independent Losses for Paid Regression with Diagonal Pairs 

Paid Incurred Unpaid Unpaid d 6 - 5 d 4 - 3 d 1 - 2
1228 978 0 0 0 0 978
1082 1844 0 0 0 0 -1844
2346 2904 0 0 0 -2904 0
3006 3502 0 0 0 3502 0
1910 2812 0 0 -2812 0 0
2568 2642 0 0 2642 0 0

166 0 300 0 0 0 -300
214 0 604 0 0 -604 0
494 0 596 0 0 596 0
432 0 666 0 -666 0 0
870 0 1104 0 1104 0 0
54 0 0 164 0 -164 0
70 0 0 304 0 304 0

164 0 0 446 -446 0 0
126 0 0 346 346 0 0
50 0 0 120 0 120 0
52 0 0 248 -248 0 0
78 0 0 184 184 0 0
28 0 0 100 -100 0 0
64 0 0 224 224 0 0
29 0 0 80 80 0 0
Separating the diagonal dummies into individual variables for each diagonal did not help the 

standard error except in the case of diagonals 1 and 2. Putting in individual diagonal elements for 

them dropped the overall standard error to 63.3. The coefficients are in Table 10. The coefficients 

for diagonals 1 and 2 can be seen to be quite different in magnitude, so combining them into a single 

variable gives a worse fit.  

Table 10 – Paid Regression Model 

Parameter Estimated St dev t Pr(>|t|)
Incurred 0 0.8286 0.0107 77.341 0.0000

Unpaid 1 0.6619 0.0406 16.309 0.0000
Unpaid 2 - 5 0.3342 0.0808 4.1340 0.0012

Diagonal 6 – 5 0.1378 0.0155 8.9102 0.0000
Diagonal 4 – 3 0.0326 0.0138 2.3682 0.0341

Diagonal 2 -0.2384 0.0355 -6.7189 0.0000
Diagonal 1 0.4270 0.0656 6.5056 0.0000

Without going into so much detail, a similar process for fitting a model to the unpaid losses led 

to a regression with independent variables the previous cumulative paid and current paid for lag 1 

(with a constant term). Just previous cumulative paid was the explanatory variable for lag 2, and a 

single variable of previous unpaid was used for the later lags. This means that for lags beyond 2, the 
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expected unpaid was modeled as a constant percentage (here estimated as 66.15%) of the previous 

unpaid.  

The only significant diagonal is diagonal 3, which was modeled with a dummy variable similar to 

those in Table 9. The problem is that lag 1 itself is a multiple regression with two explanatory vari-

ables, so to define the diagonal dummy the rule used for any row was to give it the largest value 

among the explanatory variables in that row if the row is on diagonal 3, and zero otherwise. The 

overall standard error of the regression is 77.0. Dropping the diagonal 3 dummy increases the stan-

dard error to 92.6, so the dummy helps a good deal. The coefficients and other statistics are in Table 

11. Diagonal 4 is not significant but improves the standard error slightly to 76.7. In the end this was 

not included in the model.  

In this model, the high incurred losses for accident year 6 at development 0 will affect the pro-

jected paid at development 1, which will go into the estimated unpaid at development 2 and so on. 

However this is not as dramatic an effect as in the chain ladder, where the high incurred losses in the 

lower left corner would be multiplied by a large cumulative factor. 

Table 11 – Unpaid Regression Model  

Parameter Est value        St dev   t student Prob(>|t|)
Paid Cum 0 0.8215 0.1036 7.9316 0.0000

Paid Incrm 1 -0.5436 0.0864 -6.2889 0.0000
Constant 1 522.68 96.860 5.3963 0.0001

Paid Cum 1 0.0766 0.0098 7.8092 0.0000
Unpaid 2 - 5 0.6615 0.0983 6.7315 0.0000

Diagonal 3 0.0800 0.0281 2.8501 0.0128

2.3 Distribution of Residuals 
Various distributions can be fit to the selected models by MLE. Typically the distributions are pa-

rameterized so that the mean is one of the parameters, and for each cell that is fit as a function of 

the covariates. All the other parameters of the distribution are constant across all the cells. However 

for many distributions it can work just as well if some parameter not the mean is a function of the 

covariates, and the other parameters are still constant.  

Typically in generalized linear models, the residuals are modeled as members of the exponential 

family. These distributions are characterized by expressing the variance of each cell as a function of 

its mean, often as proportional to the pth power of the cell’s mean. However the skewness of the dis-

tributions also grows with p, which is not always in accord with the data. In Appendix 1, several dis-
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tributions are discussed which give the variance of each cell as a multiple of the pth power of the 

cell’s mean by making p one of the parameters of the distribution. Then even with the same value of 

p, the different distributions can still have heavier or lighter tails, as indicated for instance by skew-

ness.  

The Weibull can be used as well, but it is more difficult to adjust its mean-variance relationship as 

it involves gamma functions, so a p-version was not fit. But the Weibull is an interesting possible 

residual distribution as it can be fairly heavy-tailed or lighter tailed than the normal, or even nega-

tively skewed, depending on the parameters. It is most easily expressed by its survival function 1 – 

F(x) = S(x) = exp[–(x/b)c ], and E[X j ] = b j (j/c)!, where y! is short for Γ(1+y). The skewness is nega-

tive for c above about 3.6. The variance is proportional to the square of the mean, so p is always 2. 

The regression fit the b for each cell, not the mean. 

Table 12 shows the results of fitting several distributions to the paid model. For this data, moving 

to less skewed distributions increases p and at the same time improves the fit (as measured by log-

likelihood, which is equivalent to any of the information criteria such as AIC as all the distributions 

have the same number of parameters, except the Weibull, which has one fewer but has the best fit 

anyway). The Weibull, with c = 7.437 has skewness of -0.50.  

Table 12 – Paid Model Distribution Fits 

 p – Ln L Skew 
Lognormal-p 1.50 111.94 > 3CV 
Gamma-p 1.57 111.23 2CV 
ZMCSP-p 1.60 110.52 CV 
Normal-p 1.61 109.88 0 
Weibull 2 108.76 -0.50 

The similar, somewhat abbreviated, results for the model of unpaid losses are in Table 13. That 

Weibull has c = 6.037 and skewness -0.38. These two models will be used to project paid and unpaid 

losses. This does not imply that the Weibull is better in general. Other data could give quite different 

distributions. 

Table 13 – Unpaid Model Distribution Fits 

 p –Ln L Skew 
ZMCSP-p 1.96 113.30 CV 
Normal-p 2.03 112.93 0 
Weibull 2 111.88 -0.38 

With a different distribution of residuals, the coefficients for previous unpaid, etc. change a bit 
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from the usual regressions. For the Weibull, the larger cells have higher variances, so higher residuals 

are not penalized so much there, but the fits are now closer for the smaller cells. For the paid regres-

sion this ends up with the diagonal 6 – 5 and diagonal 4 – 3 parameters almost the same. Forcing 

these to be the same reduces the number of parameters by one but barely affects the loglikelihood, 

so this change was made. This is done by making a single dummy variable that is the sum of the d 6 

– 5 and d 4 – 3 variables in Table 9. As mentioned above, the Weibull fit was for the b parameter, 

not the mean, so the coefficients have to be multiplied by (1/c )! to get their effect on the mean. Ta-

ble 14 shows the resulting coefficients for the two models. 

Table 14 – Weibull Models’ Estimated Covariate Parameters 

Paid Parameter Estimate Unpaid Parameter Estimate
Incurred 0 0.7811 Paid Cum 0 0.7358

Unpaid 1 0.6854 Paid Incr 1 -0.4275
Unpaid 2 - 5 0.3306 Constant 1 388.41

Diagonal 6–5+4–3 0.0339 Paid Cum 1 0.0908
Diagonal 2 -0.1873 Unpaid 2 - 5 0.7234
Diagonal 1 0.3971 Diagonal 3 0.0525

The projected mean incurred in Table 15 agrees closely in total with Quarg and Mack [4] except 

for year 6, for which they are about 1000 higher. Their model seems to give more emphasis to the 

incurred value for that year than to the paid. This model leans more toward believing the paid, but 

still ends up higher than year 3, which had more paid at 0. The average of the paid and incurred CL 

estimates is 7279,  halfway between this model and [4]’s. 

Table 15 – Completing the Square 

Incurred 0 1 2 3 4 5 6
0 978 2104 2134 2144 2174 2182 2174
1 1844 2552 2466 2480 2508 2454 2460
2 2904 4354 4698 4600 4644 4652 4658
3 3502 5958 6070 6142 6158 6169 6177
4 2812 4882 4852 4863 4871 4877 4881
5 2642 4406 4646 4665 4679 4690 4697
6 5022 6182 6656 6685 6707 6722 6733

3 RUNOFF RANGES 

The sum of the Weibull estimates in the bottom triangle may be close to being normally distrib-

uted, but simulation is usually required to get a good handle on the actual distribution of the runoff 
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losses. The simulation can be divided into parameter risk and process risk components. Distribu-

tions for the regression coefficients and the Weibull cs can be estimated by either the Fisher infor-

mation matrix or the bootstrap, as detailed below. Here the information matrix method was used. 

Parameters can be simulated from the estimated distributions of the parameters, and then the runoff 

losses can be simulated from the Weibull distributions for each cell. 

At the parameter values that maximize the likelihood function, the derivative of the negative log-

likelihood (NLL) with respect to each parameter should be zero, but the second derivatives should 

be positive. This just means that the likelihood surface is flat at the minimum NLL but is curved 

upwards, which is usual for a minimum value. The mixed second partial derivatives could be any-

thing, however. As detailed in the actuarial exams, the Fisher information matrix is the matrix of all 

the second derivatives and mixed second partials of the NLL with respect to the parameters. Thus if 

there are n parameters, it is an nxn matrix. Its matrix inverse is an estimate of the covariance matrix 

of the parameters. 

Bootstrapping could be done by resampling with replacement from the normalized residuals of 

the fitted triangles to generate new triangles, and refitting the models. Each resampled triangle would 

give a new set of fitted parameters for the paid and unpaid models. The table of parameters that re-

sults from doing this many times would be the estimated empirical parameter distribution. For these 

models this would probably give some correlation to some of the parameters across the paid and 

unpaid models, which are uncorrelated under the information matrix method since they come from 

different models. Also the dependent and independent variables would change with each resam-

pling, which could end up with more parameter diversity as well. 

In Tables 7 and 9, label the dependent variables yj for j = 1, …, 21, and label the corresponding 

independent variables xi,j. In the final models i ranges from 1 to 6. Call the covariate parameters βi, i 

= 1, …, 6. The Weibull b parameter for each dependent variable is bj = ∑ =

6

1 ,i jii xβ . Then the deriva-
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ence on i or k is only in the x factor. The rest is just a single column (function of j) that comes right 

from the Weibull. 

The Weibull formulas (suppressing j) are: 
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These give the parameter standard deviations and correlation matrices in Tables 16 - 19. 

 

Table 16 – Paid Parameters and Standard Deviations 

Paid        Inc 0   Unpd 1 Unpd 2-5 Diag 6543    Diag 2    Diag 1 c 
Parameters 0.832 0.730 0.352 0.036 -0.200 0.423     7.427 
Standard dev 0.050 0.052 0.016 0.014 0.069 0.176 1.392 
Ratio 16.70 14.08 22.31 2.49 -2.87 2.40 5.33 

 

Table 17 – Unpaid Parameters and Standard Deviations 

Unpaid Pd Cum 0 Pd Inc 1      Const Pd Cum 1    Unpd 2-5 Diag 3 c 
Parameters 0.793 -0.461 418.5 0.098   0.780 0.057    6.037 
Standard dev 0.145 0.100 102.9 0.008   0.042 0.022 1.148 
Ratio 5.48 -4.62 4.07 11.64   18.55 2.52 5.26 
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Table 18 – Paid Correlation Matrix 

1 0.17 0.00 -0.12 -0.24 -0.28 0.11
0.17 1 0.00 -0.19 -0.62 -0.05 0.14
0.00 0.00 1 0.19 0.01 0.00 0.26

-0.12 -0.19 0.19 1 0.13 0.03 -0.03
-0.24 -0.62 0.01 0.13 1 0.07 -0.08
-0.28 -0.05 0.00 0.03 0.07 1 -0.03
0.11 0.14 0.26 -0.03 -0.08 -0.03 1

Table 19 – Unpaid Correlation Matrix 

1 -0.86 0.00 0.02 0.01 -0.03 0.06
-0.86 1 -0.49 0.00 -0.01 -0.05 -0.03
0.00 -0.49 1 -0.02 -0.01 0.07 -0.03
0.02 0.00 -0.02 1 0.07 -0.29 0.29
0.01 -0.01 -0.01 0.07 1 -0.04 0.22

-0.03 -0.05 0.07 -0.29 -0.04 1 -0.09
0.06 -0.03 -0.03 0.29 0.22 -0.09 1

Two simulation steps were done with these parameters. First the parameters were simulated, then 

the Weibull losses were simulated for each cell in the projected lower triangles.  

To simulate the parameters, MLE parameters are asymptotically multivariate normal with the de-

rived correlation matrices. However with small samples like these, the normal approximation might 

not hold. Simulation experiments have found that lognormal distributions are more realistic for 

small samples. As one example, the simple Pareto shape parameter, given a known location parame-

ter, is inverse gamma distributed. This gets normal-like for large samples, but is heavier-tailed, as is 

the lognormal, for small samples. For the lognormal assumption, the absolute value of negative pa-

rameters could be assumed to be lognormal. One advantage of the lognormal over the normal is that 

the simulated parameters will not change signs from the mean parameter, even for remote points in 

their distributions.  

For these reasons the lognormal was used here. To simulate the multivariate lognormal, the cor-

relation matrices were input into a normal copula, and then lognormal marginal distributions ap-

plied. This maintains the Kendall’s tau and rank correlation, but not the linear correlation, of the 

parameters. The needed reserve position, calculated as ultimate incurred less current incurred, from 

the mean parameters is 6212. 10,000 simulations had mean runoff of 6203, with a standard deviation 

of 801. This gives a CV of 13%. The coefficient of skewness is 3.4%, which is closer to a normal 
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distribution than the 26% for a gamma with the same CV. Thus, the normal might provide a reason-

able approximation in this case. 

4 OTHER SYSTEMATIC RISK 

Loss reserves are subject to inflation and trends in the lawsuit environment that happen between 

occurrence and payment. Some degree of such trend may be built into the accident year level 

changes, but this is hardly a full reflection of the risk. The average level of future inflation built into 

the projections could be off, and in addition there are likely to be year-to-year changes in inflation, 

perhaps correlated one year to the next. Usually the data in the triangle itself is not sufficient to es-

timate these systematic risks, so they have to be superimposed afterwards.  

An internal study of historical variability in trends and actual runoff, based on U.S. annual state-

ment data for a number of companies and inflation variability, suggested that there is quite a bit 

more variability in actual runoff than standard reserving models would predict. Also Wright [11] 

found in a simulation test that runoff ranges from typical methods tend to be too narrow. Gluck [3] 

proposes ways to incorporate systematic risk elements into insurer financial models in general and 

loss reserve runoff risk in particular. The model used below is roughly consistent with his approach 

but the numerical values are for illustration only.  

In a single simulation of the runoff, the simulated value for losses paid in accident year w at lag d, 

and thus in calendar year w+d, is multiplied by a simulated factor Hw,d given by: 

  Hw,d = BDw+d–nEw+d , where: 

B is a mean 1 factor for all calendar years that can be thought of as frequency risk; a normal dis-

tribution with a standard deviation of 10% is assumed in the example.  

D is a lognormal mode 1 draw for all calendar years in the simulation to represent an overall 

trend error that compounds; n is the last diagonal in the data; a standard deviation of 2% is used for 

D.  

Ew+d is generated from an AR-1 model, to represent (ii). The process for E is as follows: The Xis 

are independent N(0, σ2) random draws, and ρ ∈ [0,1] is the autocorrelation coefficient. Let t1 = X1, 

and ti+1 = ρti+Xi+1. Then ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

−+

=
+

ndw

j
jdw tE

1
exp . The values σ = 2.5% and ρ = 70% are used in the 
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numerical example. 

Using lognormal mode 1 factors gives an increase in the mean reserve. Actually something similar 

happens in just multiplying normal mean 1 factors that are positively correlated. This is justified in a 

few ways. First, an error in trend would compound and the effects on each year would be correlated. 

Second, new claim types and other superimposed changes tend to have an upward drift. Third, many 

reserve models, including this one, do not project ongoing calendar-year trends, but these often do 

affect open claims from previous years. 

In a sense, this approach incorporates a degree of model risk, in addition to process and parame-

ter risk. For instance, it is difficult in the fitting to distinguish calendar-year trends from upward and 

downward individual calendar-year gyrations. This is a model-risk issue. Even if the fitted model has 

calendar-year trends in it, there is still a question of which trend to project going forward. Thus put-

ting trends into the model does not automatically solve the model-risk problem, and systematic pro-

jection risk still needs to be incorporated. The simulated distributions, with annual discount factor 

0.96 (a rate of 4 1/6 %), are in Table 20. 

Table 20 – Simulated Moments and Percentiles of Runoff Distribution 

Probability Model + Systematic Discounted
0.4% 4,089 3,766 3,507
1.0% 4,359 4,054 3,760
5.0% 4,881 4,614 4,289

10.0% 5,174 4,930 4,586
25.0% 5,665 5,506 5,119
50.0% 6,203 6,186 5,746
75.0% 6,734 6,941 6,441
90.0% 7,228 7,663 7,107
95.0% 7,515 8,101 7,507
99.0% 8,078 9,056 8,396
99.6% 8,389 9,714 8,924
Mean     6,203     6,258     5,808 

Std. Dev.         801     1,076       991 
CV         0.13       0.17      0.17 

Skewness           0.03       0.40      0.38 

Including systematic risk at this level slightly increased the mean, but approximately doubled the 

variance, increasing the spread both upward and downward. Even the discounted losses with sys-

tematic risk were higher than the original model above the 95th percentile. Both systematic risk dis-

tributions were slightly more skewed than the gamma with the same CV, which would have skew-
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ness of about 0.34, but were less skewed than the lognormal or inverse Gaussian. Possible distribu-

tional assumptions that could match these distributions are discussed in Appendix 2. 

If several lines are being modeled, it would be reasonable to assume that the systematic risk ele-

ments were highly correlated across lines, since they arise largely from external influences. Thus even 

if the development patterns themselves are not highly correlated, including systematic risk could 

produce a higher correlation. 

5 VALUE OF RESERVES 

Once a distribution of reserves has been estimated, what do you do with it? One application is to 

estimate the financial value of the reserves, which could be useful for market-value accounting or 

valuation of the entire company. There are a few alternatives for how to do this. For instance, in 

Australia insurers post the 75th percentile of the distribution as the balance-sheet value. To try to get 

to a market value, there are two prevailing financial theories: the capital asset pricing model (CAPM) 

and its generalizations, and arbitrage-free pricing. Typically CAPM-like approaches price only the 

systematic risk, while arbitrage-free pricing looks at the whole distribution of possible outcomes. 

There are also traditional actuarial pricing methods, like mean plus a percentage of standard devia-

tion. 

Balance-sheet items need to be additive, as users of financial statements like to add and subtract 

assets and liabilities. If there really were a market for reserve risk, prices would be additive also. Oth-

erwise traders could buy risk, pool it, and sell it for no-risk profits. Arbitrage-free and CAPM prices 

are additive, and standard deviation loads can be made additive, as shown below. These methods can 

be subdivided at will and still maintain additivity. Lines can be allocated by state and accident year, 

and summed to by-state totals, etc. Here only methods that use the entire distribution will be used, 

but having a model for systematic risk would allow using CAPM-type approaches as well. 

Arbitrage-free pricing uses probability transforms of possible events, putting more weight on ad-

verse outcomes, and takes the transformed mean as the price. This is where having a distribution of 

reserve runoff could be applied. One well-known transform is the Wang [5] transform. This trans-

form applies to the survival function S(x) = 1 – F(x) to produce a transformed survival function 

S*(x). In its original form it just translated normal percentiles, so S*(x) = Φ[λ+Φ−1(S(x))], where Φ 

is the standard normal distribution function. A bit different form, first suggested by John Major, is 
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S*(x) = Qν[λ+Φ−1(S(x))], where Qν is the t distribution with ν degrees of freedom. This puts more 

weight into the tails of the distribution.  

The original normal-normal version will be called the NN transform here. The NN transform 

moves the probability away from the lower percentiles towards the higher percentiles. The Wang 

transform generally does this as well, but the heavier t tails can also put more probability into the 

extreme left tail, even after translating by λ. This is a stronger effect with lower values of ν, because 

the t approaches the normal for high value of ν. In this transform ν does not have to be an integer, 

as the beta distribution can be used to calculate the t even for non-integer degrees of freedom. Using 

the function betadist as defined in Excel, the calculation is Qν(x) = ½ + ½ 

sign(x)betadist[x2/(ν+x2), ½, ν/2]. 

Once the transformed events probabilities are calculated, the value of the reserves are estimated 

as the transformed mean. The mean of each accident year can be calculated with the same trans-

formed probabilities. Then the resulting accident-year values add up to the total value. If several 

lines are being done simultaneously, the transform is done on the aggregate loss probabilities. That 

gives probabilities for each simulated scenario, then they are applied to the losses for each line and 

accident year in that scenario. Thus, any correlations gets into the overall value and the individual 

line values reflect the correlations. 

Another transform with theoretical and empirical support (for example, see Venter [12]) is the 

Esscher transform. While the Wang transform is defined on the aggregate distribution, the Esscher 

transform is defined on the density or discrete probability function. For density g(x), the trans-

formed density with parameter c is defined by g*(x) = g(x)exp(cx/EX)/ E[exp(cX/EX)]. This trans-

form depends on the distribution being transformed, as the transform at x depends on x. The Wang 

transform, on the other hand, depends only on S(x). Thus with given parameters ν and λ, any simu-

lation of 10,000 equally-likely events will get the same transformed probabilities. 

Since the Wang transform is done on the survival function, a couple of steps are needed to apply 

it to the scenario probabilities from a simulation. Some of these are a bit arbitrary. The survival 

function at the kth simulation here is calculated as k/10,001. This keeps the survival function in the 

range (0,1), although there are other ways to do that. Then S* has to be translated back to individual 

scenario probabilities. To do this, the lowest point was considered to represent the range from zero 

to half the way, in probability, between it and the second lowest point. Thus, it was assigned prob-



Distribution and Value of  Reserves Using Paid and Incurred Triangles 

Casualty Actuarial Society E-Forum, Fall 2008 20 

ability 1 – [S*(x1)+S*(x2)]/2. Then the next point gets the average between the next two midpoints, 

or [S*(x3) – S*(x1)]/2, etc. Finally the last point gets [S*(x10,000)+S(x9999)]/2. This forces the probabili-

ties to sum to 1. 

The standard deviation loading can be allocated with the Euler method. This method was used by 

Patrik, Burnegger, and Rüegg [13] for capital allocation and Venter, Major, and Kreps [14] used it for 

allocation of risk measures, and showed the steps needed to apply Euler’s work to random variables. 

The use for risk measures can be used to allocate standard deviation loading as well. The general ap-

proach for a risk measure ρ(Y), where Y = X1+…+Xn is to allocate to Xk r(Xk) = 

ε
ερρ

ε

)()(lim
0

kXYY −−
→

.  

The numerator is the reduction in the risk measure from ceding a quota share of ε of Xk. Then 

r(Xk) is the reduction in ρ(Y) from an incremental reduction in Xk scaled up by ε. Basically it is treat-

ing every increment of Xk as the last in. The result of Euler is that the sum of the allocations over all 

the Xs is the whole risk measure ρ(Y) in the case ρ is homogeneous of degree 1, i.e., ρ(aY) = aρ(Y). 

When ρ(Y) = standard deviation(Y), the allocation is shown in [13] to be r(Xk) = Cov(Xk,Y)/ρ(Y). 

This is not based on the standard deviations of each component, but rather the component’s contri-

bution to the standard deviation of Y. 

Even a loading based on a percentile of the distribution can be allocated in this manner. The pth 

percentile can be expressed as E[Y|F(y) = p]. Then the marginal allocation is shown in [13] to be 

E[Xk|F(y) = p]. In a simulation, this would be the value of Xk for the simulation where the probabil-

ity of Y is p. However this is not a very stable allocation, and in practice the average of simulations 

for a range around that simulation is used. This is then not truly an allocation of the percentile but 

an allocation of a range around it, sometimes called blurred value of risk.  

All of the pricing measures discussed have a free parameter or two which have to be set to some-

thing. In practice some market benchmarking can help establish this. Unlimited portfolio transfers 

are not usually available, but a limit of twice the mean may be. That is over the 99.99th percentile for 

this simulation, so may be a good approximation for unlimited. An internal study a few years ago 

found that many reinsurance treaties are priced at the mean plus one-third to one-half of a standard 

deviation. Taking the Wang parameters of ν = 10 and λ = 0.47 gives a loading of close to half a 

standard deviation, with a discounted market value of 6303.8. This is the 70.7th percentile of the dis-
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counted distribution, so would produce a profit slightly more than 70% of the time. Another 

benchmark is how much capital above the premium could be kept at return of 15%, and the prob-

ability level of that capital. In this case, with a profit load of 495, that would be 2807 of capital, 

which with the premium would get to the 99.93rd percentile. That would be a fairly safe capital level. 

Thus this is a reasonable value by some benchmarks. Whether or not it is reasonable, in fact, would 

require more benchmarking against actual deals, however. 

The same price would come from an Esscher transform with c = 2.6612. The resulting values for 

the individual accident years from each methodology are shown in Table 21. 

Table 21 – Value of Discounted Reserves by Accident Year for Several Methodologies 

 1 2 3 4 5 6 total 
Esscher transform 106.2 154.8 311.0 220.5 658.7 4,852.6 6,303.8
Wang transform 106.3 154.9 311.1 221.4 662.3 4,847.6 6,303.8
Standard dev. 106.2 154.6 310.6 220.1 657.4 4,854.9 6,303.8
Percentile alloc  107.1     156.4     316.3   218.4      646.1     4,859.4     6,303.8
Mean discnted 102.1 147.9 294.9 208.8 620.7 4,434.0 5,808.5
Mean undiscnted 112.4 164.6 330.9 235.8 694.9 4,718.9 6,257.7
Cov Disc w total 8,039 13,230 31,058 22,325 72,840 834,834 982,326
Cor Disc w total 43% 40% 43% 42% 50% 97% 100%
The allocations are all quite similar, but the percentile allocation is slightly different than the oth-

ers. The Esscher and standard deviation values are closest overall. The percentile allocation is actu-

ally the average of 101 simulations centered at the actual percentile value adjusted slightly to balance 

to the mean. 

The ratios of transformed to actual probabilities for the Esscher and Wang transforms are 

graphed in Figure 3, along with the NN version of the Wang transform, which matches the trans-

formed mean by setting λ = 0.485. 

The Wang transform strengthens both tails, but with ν as high as 10, the left tail strengthening is 

not great. It also strengthens the right tail quite a bit. For the Esscher, Wang, and NN transforms, 

the ratios at the second to highest value are 8.4, 13.8, and 5.3. For most of the range, however, the 

transforms are fairly similar. 

The additive methods reviewed here give similar allocations in this case. When some components 

are more heavy-tailed, there can be greater differences. The importance is in using some kind of ad-

ditive approach. Further benchmarking would be necessary to see which make most market sense. 
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Figure 3 – Ratios of Transformed to Actual Probabilities 
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6 SUMMARY AND FURTHER POSSIBILITIES 

A growing body of research is finding that paid and incurred losses can help predict each other. 

Here a regression approach was used to model paid and unpaid losses, with earlier paid, incurred, or 

unpaid losses all available as independent variables. It is not asserted that the best possible regression 

was found. Using paid-to-incurred ratios as independent variables could potentially be useful, for 

instance. In fact, after the first few lags, unpaid losses were significant in predicting future paid and 

unpaid, consistent with the suggestion of Jedlicka [9]. Coefficient and overall standard errors were 

the key regression diagnostics used for evaluating models. Barnett and Zehnwirth [10] recommend 

residual plots as well, which can be useful but sometimes require regression experience to evaluate.  

Once a reasonable regression model was found, MLE was used to evaluate other residual distri-

butions. This requires a non-linear optimization routine. Weibull residuals with slight negative skew-

ness and variance proportional to the mean squared maximized the likelihood. This is a bit surpris-
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ing, as if you think of the cells as compound frequency-severity processes, positive skewness and 

variance proportional to a lower power of the mean would be more anticipated.  

Once in the world of non-linear optimization, other models become possible as well. For in-

stance, the cell means could be linear functions of independent variables times diagonal effects times 

some power of the paid-to-incurred ratio, possibly with the power declining for later lags as in Ver-

dier and Klinger [8], plus an additive residual. However this kind of modeling would not readily be 

able to take advantage of the ease of linear regression software for exploratory analysis. If the obser-

vations are all positive, as would be likely with paid and unpaid data, the regression steps could be 

done in logs, then a multiplicative model with additive residuals fit later if needed for a good residual 

distribution. Another modeling approach worth pursuing is the idea of Mack [7] to look and paid 

and incurred development in cross-classified multiplicative models. 

The information matrix from MLE was used to estimate parameter uncertainty, with the selec-

tion of a lognormal distribution of parameters due to the small sample sizes. Bootstrapping is cer-

tainly an alternative here, and may be preferable in that it can pick up possible correlations among 

the parameters of the two different models. In fact Liu and Verrall [15] have already used bootstrap-

ping for the model of Quarg and Mack. Bootstrapping for the model here would be a bit more 

computationally intensive than usual, due to the non-linear multivariate optimization at each step, 

but would have another advantage in that the choice of normal vs. lognormal parameter errors 

would not be needed. 

Systematic risk, including model risk, is clearly an issue in reserve modeling, and historical loss 

development volatility has been substantial, with even more variability than standard models might 

suggest. This was reflected here with selected distributions, but should be studied in a more formal 

way. Similarly, reserve value was illustrated with some rough benchmarks, but more research into the 

market value of loss reserve risk is called for. The methods of transformed distributions and Euler 

for producing additive market-values were illustrated. In this case they were not so different, once an 

overall market value was established. 
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Appendix 1 – p-Distributions 
In Venter [2] parameters are added to standard distributions to specify the relationship of vari-

ance and mean when used with covariates. Typically a distribution will be re-parameterized so that 

the mean is a parameter, and that parameter will be a function of the covariates. The other parame-

ters will be constant for all the observations. Many distributions can be parameterized so that the 

variance of each observation will be proportional to any desired power of the mean. That power pa-

rameter can then be estimated by MLE to get an idea of how the residuals’ variances relate to their 

means for a given data set. Not all the distributions below are in [2], and some are parameterized a 

bit differently here. Although they can each produce a variance proportional to any desired power of 

the mean, they differ in other shape features, such as skewness. Sometimes the over-dispersed Pois-

son (ODP) is defined as any distribution where the variance is proportional to the mean. Under that 

definition, any of these distributions can be an ODP just by taking p=1. However they will differ in 

other shape characteristics. The distributions below are by increasing skewness. 

Normal-p 

The normal distribution is typically parameterized with mean μ and variance σ2. Introducing two 

new parameters k and p, it can be re-parameterized just by setting σ2 = kμp. It then has log density 

ln f(x) = –½ln(2πkμp) – (x – μ)2/(2kμp). With k and p constant across all observations, each obser-

vation’s variance will just be k times its mean raised to the p. The skewness is 0. 

ZMCSP-p  

The zero-modified continuous scaled Poisson, as discussed in Venter [2] and Mack [15], is the 

Poisson distribution function extended to the positive reals, plus a scaling factor, with the probabil-

ity at 0 set to the value needed to bring the entire probability to 1. It has variance close to propor-

tional to the mean and skewness close to the coefficient of variance (CV), which is the ratio of stan-

dard deviation to mean. It is a continuous form of ODP that retains much of the shape of the Pois-

son distribution. The density can be written as: 

( ) ( )ppkxpk kxkkexf
pp −−−− +Γ=

−− 112 1/)(
12

μμμ
μμ . 

For large means, the mean, variance, and skewness are very close to μ, μp/k, and CV. For smaller 

means, a small adjustment is needed. See [2] for details. 
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Tweedie 

The Tweedie distribution has p between 1 and 2, and the skewness is pCV. It is actually a special 

case of the Poisson-gamma aggregate distribution with the frequency and severity means coordi-

nated. Starting with a Poisson in λ and a gamma in θ and α, introduce new parameters p, μ, and k 

with p = 1+1/(α+1), λ = kμ2–p, and the severity mean αθ = μp–1/k . Then the aggregate mean is μ. 

Since α is positive, p is between 1 and 2, so both the frequency and severity means are increasing 

functions of μ. Thus a higher overall mean in a cell is a combination of a higher frequency mean 

with a higher severity mean. The aggregate variance turns out to be μp/[(2 – p)k]. Fitting by MLE is 

discussed in [2]. 

Gamma-p 

The gamma distribution is usually parameterized F(x,θ,α) = Γ(x/θ; α) with the incomplete 

gamma function Γ. This has mean αθ and variance αθ2. To get the mean to be a parameter, set 

F(x,μ,α) = Γ(xα/μ; α). Then the variance is μ2/α and μ is still a scale parameter. For the gamma-p, 

take F(x;μ,k,p) = Γ[x/(kμp–1); μ2–p/ k], which has mean μ and variance kμp, with skewness = 2CV.  

Lognormal-p  

The usual parameterization of the lognormal is: ⎟
⎠
⎞

⎜
⎝
⎛ −

=
σ

μσμ )ln(),;( xNxF . This has mean 

2/2σμ +e and variance ( )1
222 −+ σσμ ee . Now reparameterize with three parameters p, m and s: 

 

This has mean m, variance s2mp, and skewness 3CV+CV3, where CV = smp/2 – 1. Here μ has been re-

placed by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+ −221
ln

pms
m  and σ2 by ln(1+s2mp – 2). 

Appendix 2 – Possible Distributions for Simulations 
Some of the work on loss reserve risk is on moments only, so having simulated distributions can 

provide a test of different parameterized distributions. In this case there are three simulated distribu-
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tions: the original model, that plus systematic risk, and that discounted. The CV for the first is 13% 

and for the other two is 17%. The skewnesses are 3%, 40%, and 38%, respectively. For two-

parameter distributions, the CV and skewness are often determined by only one of the parameters, 

so they become functions of each other as well. The skewness for CVs of 13% and 17% for a few 

common distributions is shown in Table A2-1. 

Table A2-1 – Skewness for CVs of 13% and 17% 

Distribution  CV: 13.0% 17.0% 

Normal 0 0 
Weibull -45.6% -60.1% 
Poisson 13.0% 17.0% 
Gamma 26.0% 34.0% 
Inverse Gaussian 39.0% 51.0% 
Lognormal 39.2% 51.5% 

 

The skewness for the original model is closest to, but higher than, that of the normal. For the 

other models, it is closest to but somewhat higher than that of the gamma.  

A convenient distribution for matching three moments is the shifted gamma. X – a is gamma in 

θ and β, so EX = a + θβ, VarX = θ2β, and skewness = 2β–½ . For a positively skewed distribution 

it is always possible to solve for the three parameters in terms of these moments, but the shift can be 

negative, giving positive probability to negative values of X. If the skewness is 2 or greater, the 

gamma has its mode at zero, and the density declines from there, which may not be a realistic shape 

in some cases. Then perhaps a shifted-lognormal or power-transformed beta or gamma may work 

better. In terms of the moments the parameters are: β = (2/skw)2; then θ = Var/β = stdev*skw/2; 

and a = mean – θβ. The parameters for the three distributions simulated are in Table A2-2. 

Table A2-2 – Shifted gamma parameters for simulated distributions 

 Model +Systematic Discounted

a -41,581.7 910.01 580.25
θ 13.424 216.58 187.89
β 3559.6 24.69 27.83

 

The parameters for the original model look strange, but in fact the probability of a negative result 

is less than 10–15. The shifted-gamma probabilities for selected percentiles of the simulated distribu-
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tions are shown in Table A2-3. 

Table A2-3 – Shifted gamma probabilities for simulated percentiles 

Probability Model +Systematic Discounted
0.40% 0.38% 0.30% 0.32%
1.00% 1.00% 0.93% 0.92%
5.00% 4.84% 4.94% 4.96%

10.00% 9.88% 9.94% 10.01%
25.00% 25.19% 25.28% 25.30%
50.00% 50.23% 50.02% 49.99%
75.00% 74.75% 75.05% 75.09%
90.00% 89.92% 89.84% 89.92%
95.00% 94.84% 94.67% 94.73%
99.00% 98.98% 98.96% 99.02%
99.60% 99.65% 99.72% 99.69%

 

The fits are fairly good between 1% and 99%, with a little fading off in both far tails. This is not a 

given from matching three moments, because other distributions matching the same moments could 

have fairly different shapes. The shifted gamma may or may not fit as well to other development 

triangle runoff distributions. 


