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Abstract The loss development triangles in casualty insurance have a similar setup to the mor-

tality datasets used to identify and project mortality trends for life insurance. Some of the tech-

niques used in casualty insurance triangle modeling are reviewed to see if they may be applicable to 

mortality modeling. Some turn out not to be while others are promising. The mortality models 

may have some applicability in casualty loss development as well. 
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Triangles in Life and Casualty 

The loss development triangles in casualty insurance are similar to the mortality triangles used to 

study trends in mortality. Both arrays are triangles, or triangles with some part missing, with the 

bottom of the triangle to be filled in by modeling. We will look at applying some of the techniques 

used in casualty insurance, particularly parameter reduction, to see if it helps with the life insurance 

problem.  

An example is worked through on French mortality data from the Human Mortality Database. 

As the interest is in longevity, ages at death of 50 and on were used. This was stopped at age 99, as 

the data got a bit dicey after that. Calendar years used started at 1947, as since then there has been 

stability in national boundaries, with the data ending with 2004. This resulted in using year-of-birth 

cohorts 1848 to 1954. 

In casualty insurance the rows of the triangles are typically year of accident occurrence, and up-

ward-right sloping diagonals are all in the same year of payment. The columns are called payment 

lags, but as any loss occurring in say 2007 and paid in 2008 is identified as lag 1, lag 1 can be any-

where from 0 to 2 years of time elapsed between occurrence and payment. In the life case the rows 

are typically age at latest birthday before death, and the columns year of death, so the similar di-

agonal is year of birth. This can be a two-year range, however, similar to lag in the casualty case. 

Some of these choices are arbitrary, so to make the life triangle a little more like the casualty tri-

angle, we take the rows to be year at birth and the columns age at death. Then the diagonals be-

come calendar year of death. The diagonals could be defined precisely as in the casualty case, but 

we choose to define the rows and columns precisely so the implied diagonals are two-year ranges. 

We will be sloppy about how we refer to this, usually talking like it is a single year. 

One reasonably good model of mortality is Lee-Carter plus cohorts, from Renshaw-Habermann 

(2006) (RH). Using casualty-type notation for this, let d represent the age in a column and w the 

birth-year for a row. Then w+d is the year of death, so is constant on the diagonal. The mortality 

rate for a cell is mw,d = Dw,d/Ew,d, where D and E are the deaths in the cell and the number alive 

from year of birth w at age d. This could be at the beginning of the year or the average for the year. 

Suppressing the error term, the RH model in this notation can be expressed as: 

log mw,d = ad + bdhw+d + cduw  
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Since ad is usually close to the average of the log mw,d, defining xw,d = log mw,d – ad gives the 

model xw,d = bdhw+d + cduw . In casualty insurance it would be more usual to use the model xw,d = 

bdhw+duw, so this is tested as an alternative and referred to as the TV model, as Taylor (1977) pro-

posed it for x = losses, following Verbeek (1972) who proposed it for x = claim counts. However 

we estimate ad by MLE instead of using the average, so TV here is log mw,d = ad + bdhw+duw . The 

RH model may be interesting for casualty insurance, taking x as losses in xw,d = bdhw+d + cduw . 

To do MLE, E is considered deterministic and D stochastic. A typical assumption is that Dw,d is 

Poisson in mw,dEw,d. The loglikelihood is then: 

L = w,d{Dw,dlog[mw,dEw,d] – mw,dEw,d – log[Dw,d!]} 

The RH and TV formulas for mw,d can be substituted here. To do the MLE, start with setting the 

partial derivatives of L with respect to (wrt) each parameter to zero. 

For a particular j, differentiating the RH formula wrt aj gives: 

exp(aj) = wDw,j / wEw,jexp(bjhw+j+cjuw) 

Denote the modeled point as w,d = Ew,dexp(ad+bdhw+d+cduw) and the residuals as Rw,d = Dw,d  

w,d. The first and second derivatives of L wrt bj are: 

wRw,jhw+j ;             – whw+j
2

w,j 

Wrt cj are: 

wRw,juw ;                 – wuw
2

w,j 

Wrt ui are: 

dRi,dcd ;                   – dcd
2

i,d 

And wrt hk are: 

w+d=kRw,dbd ;           – w+d=kbd
2

w,d 

For the b, c, u and h parameters it is not possible to solve explicitly for the parameter in terms 

of the others and the data. If it were, you could iterate for the parameters in the fashion of Bailey 

and Simon (1960), i.e., solve for one set in terms of the others, going through each set in turn, and 

repeating until convergence. However Goodman (1979) provided a work-around in this case: do a 
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Newton-Raphson iteration at each step instead of solving for the parameters exactly. Since you 

want the derivatives to be zero, the iteration for parameter  is i+1 = i – L’/L’’, where the de-

rivatives are wrt .  

Differentiating the TV formula wrt aj gives: 

exp(aj) = wDw,j / wEw,jexp(bjhw+juw) or aj = aj + log( wDw,j / w w,j) for iteration. 

The first and second derivatives wrt bj are: 

 wRw,jhw+juw ;                       – whw+j
2uw

2
w,j 

Wrt ui are: 

dRi,dbdhi+d  ;                         – dbd
2hi+d

2
i,d   

And wrt hk are: 

w+d=kRw,dbduw ;                 
   – w+d=kbd

2uw
2

w,d . 

For RH, Cairns etal. (2007) suggest the following parameter constraints for identifiability rea-

sons: dbd = dcd = 1; wuw = khk = 0. For starting parameters in the iteration, ad is taken as 

the average over w of log mw,d, each bd and cd is 1/n, and uw and hk start at zero. The latest estimate 

of the s is used at each step. Since they are initially zero, the h and u parameters are iterated first, 

then b and c, then a, which has the best starting values. The constraints are applied to adjust the 

iterated parameters at each iteration using the formulas:     bd
*  =  bd/ bd ;     cd

* =  cd/ cd ; uw
*  =  

[uw – average(uw)] cd ; hk
* = [hk – average(hk)] bd ; ad

* = ad + cdaverage(uw) +bdaverage(hk). Then 

ad
* + bd

*hw+d
* + cd

*uw
* = ad + bdhw+d + cduw and the constraints are satisfied. 

The estimated parameters for the RH model under these constraints are graphed below. The 

loglikelihood is 19005.8. The trend in the a’s just shows the degree of increasing mortality by age 

after adjusting for the other bits. The u parameters are the age-of-birth, or cohort, effects, which 

generally increase until about 1900 and have been declining gradually since, but with some sharp 

exceptions, particularly in the 1915 – 1920 range, which was perhaps influenced by wars and epi-

demics. The c parameters show how the cohort effect varies by age. As these are gradually declin-
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ing, then fall off more sharply at higher ages, the cohort effect decreases as the cohort attains older 

ages. The trend parameters h are declining over time, showing continuing mortality improvement 

by this measure. The effect of the mortality trend on different ages is shown by the b parameters, 

which rise until age 79, then decline. 

RH model a, b, c parameters for ages 50 to 99 
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RH model h parameters for years of death 1947 to 2004 
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For the TV model we take as constraints that the h and u parameters average 1, which will be 

their starting values. In the iterations, their iterated values are divided by their averages, and each b 

parameter is multiplied by the product of those averages. The starting values for b are taken as 0, 

and a starts at the average of log m as before. The first iterated is b, to move it off zero, then h and 

u and finally a. The result is a loglikelihood of 38,130.9. The reduction of 49 parameters is not 

worth this decrease in loglikelihood by any information criterion. The RH model seems to be a 

much better formulation for this data. Having calendar-year and birth-year effects that are adjusted 

by age seems to make sense and works well. Perhaps it is worth considering this type of formula-

tion in casualty triangles. The way calendar-year and accident-year effects interact and vary by lag 

in casualty loss development is not always well handled by the TV model, so the RH may help. 

Parameter Reduction 

In the RH model for this data there are 150 age parameters a, b, c, 107 cohort parameters u, 

and 58 calendar-year parameters h, with 4 constraints, giving a total of 311 parameter equivalents. 

A better way of counting parameters is to use Ye’s (1998) generalized degrees of freedom, which 

add up the derivatives of the fitted points wrt the corresponding data points. This could be some-

what computationally extensive, however, since an iteration would be needed to solve for the de-

rivative at each of the 2900 data points, and so is not pursued for now. 

In casualty development, relationships among parameters, like trends, are used to reduce the 

number of parameters used. For instance, Venter (2007) shows that for the classical Taylor-Ashe 

triangle, Mack chain ladder gives narrower prediction intervals than does the ODP model with the 

same estimates. The ODP model fits the data better but has more parameters and more parameter 

uncertainty. However this better fit is retained with a judicial reduction in the number of ODP pa-

rameters, which gives an ODP model with narrower ranges than the Mack model’s. 

Barnett and Zehnwirth (2000) provide a systematic way to do parameter reduction through li-

near trends. For instance, they might express ad as i=1:dyi. Then making several sequential y para-

meters equal replaces the corresponding a parameters with a linear trend over that period, thereby 

reducing the number of parameters. Basically this is fitting first differences of the parameters. 

An alternative is smoothing with splines (e.g., see Currie etal. 2004), which may have a similar 
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effect. Here we use information criteria to look at the tradeoff of goodness-of-fit and number of 

parameters. In the classic AIC, the loglikelihood has to improve by 1 to make an additional parame-

ter worthwhile. For a sample size of N, the more stringent SB criterion requires an improvement of 

½ log(N) = log(N½). There is increasing sentiment that this is too harsh on additional parameters. 

A compromise is the Hannan-Quinn information criterion, HQIC, which requires an improvement 

of log(log(N)). Here with a sample size of 2900, the per-parameter penalties to the loglikelihood 

are 1, 2.08, and 3.99 for the AIC, HQIC and SB, respectively, which basically doubles the penalty 

at each step. 

The Barnett-Zehnwirth method was tried on each of the five sets of parameters a, b, c, u, h. The 

b’s were fit fairly well with 5 trends, or 6 parameters, and the c’s by 2 trends, or 3 parameters (y1 

is a parameter, then each trend requires one more parameter). Using such trends for b and c con-

strained to average to 1 reduces the loglikelihood to 19117.9, or by 112.1. After constraints this 

is a reduction of 91 parameters. Thus the parameter reduction is easily justified according to the 

HQIC and SB criteria, but however not by the AIC. This result is suggestive that parameter reduc-

tion can be fruitful. However similar attempts at this aggressive degree of parameter reduction 

were not justified for the a, h, or u parameters. Milder parameter reduction may be helpful there. 

Linear Fit to b with 5 Trends
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Linear Fit to c with 2 Trends
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A fit to the a’s with 4 linear trends and a power curve tail is hard to tell from the a’s by eyeball, 

but the likelihood function was not impressed. 
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Looking at the linear trends gives other insights. The calendar-year trend h was fit reasonably 

well by four linear trends, as below: 

  

A slowing of the trend in the last 10 years is suggested, and may have implications for the fore-

casted trend. Trend is addressed in Appendix 1. The apparent reduction in trend does not hold up, 

however, as the first differences in h are fairly volatile. Moreover this is complicated by a possible 

downward trend in the cohort parameters u in the recent years, as seen earlier. 

Poissonness 

A natural question is whether or not the Poisson distribution is realistic. Assuming deaths in a 

cell are from independent Bernoulli trials implies a binomial distribution, which has a lower va-

riance than the Poisson. However there could be contagion effects, etc. that could make the va-

riance higher. One test frequently done (e.g., see Barnett-Zehnwith) on casualty development tri-

angle residuals is to plot standardized residuals against fitted values. Under the Poisson assumption, 

the standardized residuals are the residuals divided by the square root of the fitted values. These are 

graphed below. 

1947 to 1969 to 1984 to 1994 to 2004 
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Standardized residuals against fitted values 
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There is no clear spreading of the residuals moving to the right or the left, suggesting that the 

standard deviation of the residuals is in fact close to being proportional to the square-root of the 

means. The ranges of the residuals seem high for the Poisson, however. The negative binomial can 

be parameterized so that the variance is a multiple greater than one of the mean (although this ver-

sion is not in the exponential family). It might be more realistic in this case. 

Standard Errors of Parameters 

For casualty triangles, one approach to getting standard errors of the estimated parameters is to 

estimate the Fischer information matrix using the inverse of the matrix of the negatives of the 
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mixed 2nd partial derivatives of the loglikelihood function. E.g., see Clark (2003). Appendix 2 

shows the formulas for the mixed partials for the RH model. The diagonal of the resulting cova-

riance matrix is the variance vector of the parameters. Due to the constraints, the last b, c, h, and u 

parameter were fixed and were not used in the matrix, so it is a 311x311 matrix. 

The a, b, and c parameters were all quite significant compared to their standard errors, with  t 

statistics of 5 or more in absolute value. The h parameters (for calendar year of death) became 

more significant in the later years as the data became more stable, possibly due to larger popula-

tions. The u (cohort) parameters were not nearly as significant, however. Plotted below are the t 

statistics for these parameters. 

t statistics of u parameters with bars at 2 and -2 

The significance is often low, which suggests the possibility that some parameter reduction may 

be useful for the cohorts. A similar graph for the h parameters shows that the more recent years 

have very significant parameters, but this is not so for the older years. The standard errors them-

selves decline steadily over time as well, which is in line with the greater stability of the more re-

1840 1860 1880 1900 1920 1940 1960
-6

-4

-2

0

2

4

6



 13 

cent data, suggesting that some parameter reduction might be useful for the older years. The se’s of 

the cohort parameters displayed a similar pattern (not shown). 

 

t statistics of h parameters with bars at 2 and -2 
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Summary 

It turns out that life and casualty actuaries have both been filling in the bottoms of triangles. 

Who knew? A model from life insurance and one from casualty were fit to French life data. The life 

model fits much better and may be applicable in casualty loss development as well. Most but not all 

of the parameters are statistically significant. Fairly extreme parameter reduction methods were 

tried, and this was fruitful for two of the parameter types. Less aggressive parameter reduction may 

help with the other types. Whether the more parsimonious models produce narrower runoff ranges 

on actual business is not clear, however, as the uncertainty in the projected mortality trend is a 

large part of the overall uncertainty, and this might overwhelm the other sources. An AR1,1 model 

provided a reasonable fit to the mortality trend. The variance of residuals is close to being propor-

tional to the mean, but the distribution is more heavy-tailed than Poisson. Negative binomial may 

be a good alternative. 
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Appendix 1 – Mortality Trend 

It is fairly typical for life actuaries to fit ARIMA or Kalman filter models to the mortality trends 

h. Casualty actuaries use similar models for the inflationary trend in the calendar-year direction and 

even for the accident-year trend, which corresponds to cohorts in the mortality data. Cohorts are 

sometimes trended similarly by life actuaries. 

The Kalman filter can pick up the tendency for the trend to change, so probably is a good start-

ing point for fitting the mortality trend. If zk is used to describe the first differences in the calendar 

year parameters, i.e., zk = hk – hk-1, a simple formulation of the Kalman filter can be applied as fol-

lows. 

The true first difference process is denoted Xk and its estimate is xk. Pk|k is the estimated ex-

pected squared estimation error after the kth observation. Start with P0|0 large and x0 fairly arbi-

trary. These wash out early. Xk is assumed to change each period by a random amount distributed 

N(0, Qk) – i.e., with variance Qk. The observation zk is Xk plus a random number distributed N(0, 

Rk). The residual is yk = zk – xk-1. The new estimate is xk = xk-1 + Kkyk, where Kk is calculated by: 

Pk|k-1 = Pk-1|k-1 + Qk 

Sk = Pk|k-1 + Rk. Sk is then the variance of yk.  

Kk = Pk|k-1 / Sk. 

The updated Pk|k is (1 – Kk)Pk|k-1. 

To apply this to the h parameter first differences, we assume that for some constant R, Rk = 

(R/exposed population at k)2. The problem then is to estimate R and Qk, which is assumed to be a 

constant Q. 

The only relevant data available is the set of observed residuals yk. These should be as small as 

possible and have expected squared errors close to Sk. A somewhat ad hoc way to get a reasonable 

estimate of R and Q is thus to minimize yk
2 + (Sk – yk

2)2 over some period excluding the early 

start-off years. In practice we looked at the periods 1964 – 2004 and 1975 – 2004 and compro-

mised between them. 

P0|0 and x0 were taken as 100 and 5, respectively. The population at ages 50 to 99 ranged from 

about 11million to 20million over the period. R was estimated at 15million. The quantity mini-



 16 

mized was optimized with Q very close to zero. This says that there is no extra variance due to 

changes in X needed to explain the observed residual variability. It can all be attributed to the sam-

pling variance Rk plus the estimation error at k – 1. The values of Kk were around 3% near the end. 

These parameters imply that the true X does not change, but its estimate changes a bit with the da-

ta. The graph below shows the z’s and the resulting x’s. 

 

With no change in trend, a time-series model can pick up any autoregressive structure. An AR1 

model1 was significant for the z’s, with zk = –0.735 – 0.613(zk-1+0.735)+N(0, 2.25). This is con-

sistent with mortality trends in other studies. It produces a linear trend with parabolic errors, pro-

jected for fifty years below. However the residuals were not homoscedastic, and adjusting the va-

riance for the square of population growth was not enough to make them so. For some reason the 

mortality data in France is growing more stable than can be explained by population growth alone. 

Since the variance trend is downward, the forecast confidence intervals are probably conservative. 

                                                   

1 Fit by John Major 
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Appendix 2 – Mixed 2nd  Partials of  RH 

The derivative of the RH loglikelihood function wrt aj is wRw,j . The derivatives of that wrt any 

ai, bi or ci with i ≠ j is zero. Its derivatives wrt aj, bj and cj are – w w,j, – whw+j w,j, and                  

– wuw w,j, respectively, so these are the corresponding 2nd partials for aj. For ui the partial is         

–cj i,j and for hk it is –bj k j,j, so these are the corresponding 2nd partials with aj. 

For bj, the derivative of the loglikelihood is wRw,jhw+j . Thus the mixed 2nd partial wrt bj and cj 

is – whw+juw w,j. For bj and ui the 2nd partial is –hi+jcj i,j. For bj and hk it is Rk–j,j – bjhk k–j ,j. 

For cj, the derivative of the loglikelihood is wRw,juw . For cj and hk the 2nd partial is –bjuk–j k–j ,j. 

For cj and ui it is Ri,j – cjui i ,j. 

For ui, the derivative of the loglikelihood is dRi,dcd . For ui and hk the 2nd partial is –bk–ick–i i,k–i 

but this is only for k up to i+50. 
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