
Mortality Trend Risk 

Gary G. Venter 
Columbia University 

gary.venter@gmail.com 

Abstract:  

Mortality trend risk affects pension plans, life insurers, annuity writers and insurers of workers 

compensation, where the tail claims are mostly annuities. As with many risk sources, mortality risk 

can be broken down into process risk, parameter risk, and model risk. To have concrete examples, 

models are fit to US male and female mortality data. The Lee-Carter model with and without co-

hort effects is fit, with several distributions of residuals. Heavier-tailed distributions than Poisson 

turn out to be needed. The information matrix of the parameters is used to estimate parameter 

standard deviations and correlations. 

US population mortality is higher than for typical annuity recipients, who are usually select in 

some way. Nonetheless trends in population mortality may be relevant for select populations as 

well. Moreover, mortality in the US for permanently injured workers after medical stabilization is 

similar to that for the population as a whole, perhaps because their better access to medical care 

offsets the impact of their injuries, so population mortality data may be directly applicable in that 

case.  

The Lee-Carter model plus cohorts is found to fit the data quite well, but there are nonetheless a 

number of questions about the appropriateness of this model. Selection of the data to be fit can 

overcome some of the problems, but for female data high correlation across the parameter types 

was found that makes the parameter estimates unstable and not readily interpretable. 

Process risk, parameter risk, and model risk are discussed using the fitted models. 

Keywords: mortality risk, Lee-Carter model, cohort effects, parameter risk, model risk 
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Mortality Trend Risk 

The general categories of process, parameter and model risk are applicable to mortality projec-

tion. Model risk is particularly problematic, as it turns out that the better fitting models have as-

pects that make them questionable for projection purposes. Lee-Carter models with and without 

cohort effects with a few distributions of residuals are fit to the population mortality data from the 

Human Mortality Database (HMD) and are compared based on penalized maximum likelihood.  

The models were fit to years of death starting with 1971. Preliminary analysis found different 

trends for ages of death below 55, due perhaps to reproductive health issues and the impact of HIV 

during some of this period. Female mortality below this age improved dramatically in the 1970s 

and has changed little since, whereas for males there was a sharp increase in mortality in the 1990s 

that has since recovered. The oldest age used is 89, as older ages had quite unusual mortality pat-

terns before 1990 – mortality reducing with age, etc. These could be data issues. The data available 

during this study ends with year of death 2006. All of this resulted in using year-of-birth cohorts 

1882 to 1951. 

The model fits with cohorts turn out to be problematic in part because the oldest cohorts have 

only a few observations, which makes their parameters very responsive to just a few data points, 

and this in turn creates distortions in other parameters. Adding the data for all years of death for 

cohorts 1882 and later, maintaining the age-at-death range 55-89, reduces this problem. Another 

problem with the fits is that in the case of female death rates the correlations among parameter es-

timates is high, which reduces the significance of the parameters and leads to questionable values. 

Section 1 discusses the models used, section 2 looks at the fits, section 3 tries to interpret the 

parameters, section 4 address adding more years of death, and section 5 gets to projection risk. 

1. Models 

HMD data comes in the form of number of deaths and number of living, who are considered the 

exposures to death. These are in cells by year of death and age at death. Subtracting age from year 

gives the cohort, which is approximately the year of birth, but can be slightly different depending 

on the time of year that birth and death occurred. Data is also available by actual year of birth but in 
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most models that is considered less important, and cohort is used instead.  

Here arrays are taken to have rows for year of death and columns for age at death. The years are 

1971-2006, and the ages 55-89, so the arrays are 36x35, with 1260 elements. The years are in-

dexed by t and the ages by d. The cohort is t – d and is constant along the NW-SE diagonals of the 

arrays. 

The starting point for recent models of mortality is the LC model from Lee and Carter (1992). 

It models the mortality ratio m, which is deaths divided by exposures, in log form: 

log mt,d = ad + bdht 

Here ad is the base mortality for age d, ht is the trend level at year t, which generally goes down 

over time as mortality decreases, and bd allows different ages to have trend rates that are factors 

times the overall trend. This is useful in the case of male mortality, for example, where mortality 

rates for ages 55-60 have improved at a greater rate than those for 85-89. However this is where 

the LC model can run into differences from actual data, as some ages might trend faster or slower 

for a while but not always. 

A popular extension of LC is LC plus cohorts, from Renshaw-Habermann (2006) (RH): 

log mt,d = ad + bdht + cdut–d   

The cohort term u allows for mortality to also vary by year of birth, independently of year of 

death and age. It is not always clear why it should, but allowing it to seems to substantially improve 

the goodness of fit of the models. The c factor allows the cohort effect to vary by age. E.g., it might 

wash out at older ages, or it might be stronger at older ages. 

There are some identifiability problems with these models. For instance, increasing every b by a 

factor and reducing every h by the same factor does not change the fitted values. This is similar for c 

and u. Here the constraints used for this are to set b1955  =  c1955 = 1 and h1971 = u1917 = 0. The co-

hort 1917 was chosen as it is the last cohort that includes all calendar years. It is also one of the 

highest mortality cohorts for both males and females. The result of these constraints is that in the 

LC model ad is the fitted mortality for t = 1971 and ht is the trend level for age 55. All the other 

parameters are relative to these. In the RH model, every u is the cohort effect at age 55, where the 

cohort values are relative to cohort 1917. 

Fitting is done by maximum likelihood estimation (MLE). Denote the exposures in the t,d cell 
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by Et,d and the deaths by Dt,d. The Poisson model is that Dt,d is Poisson in mt,dEt,d, where mt,d could 

come from either the LC or RH model. With mean , the log of the Poisson probability at k is 

klog() – – log(k!). The loglikelihood is then: 

t,d{Dt,dlog[mt,dEt,d] – mt,dEt,d – log[Dt,d!]} 

Two forms of the negative binomial distribution are also fit. The negative binomial has two pa-

rameters r and, with mean r and variance r(1+). But in modeling a whole array of negative 

binomial variates it is customary to make the mean a parameter and model it with the covariates. In 

this case the mean would still be t,d = mt,dEt,d, as in the Poisson case. 

To make the mean a parameter, set  = r. The two forms arise by either eliminating r by set-

ting r = , or eliminating  by setting  = r. Here these are called NB1 and NB2, respective-

ly. Both have mean , but NB1 has variance (1+) and NB2 has variance (1+/r), which are 

linear and quadratic in , respectively. Denoting the log of the gamma function by lgamma, the log 

of the probability at k for the negative binomial in r and  is: 

lgamma(r+k) +klog() – lgamma(r) –lgamma(1+k) – (r+k)log(1+) 

The loglikelihoods for NB1 and NB2 can be obtained by substituting  for r or r for , then 

Dt,d  for k and mt,dEt,d for , and summing over the observations. 

2. Fits 

Goodness of fit of different models can be compared using penalized likelihood. The traditional 

comparison is to start with the negative loglikelihood, NLL, and add a penalty. Here the traditional 

criteria divided by 2 are used, as these are more directly related to the NLL, but the standard 

names  are retained. Thus the Akaike Information Criterion, AIC, uses a penalty of 1 for each pa-

rameter. If N is the sample size (number of observed cells), the Bayesian Information Criterion 

(BIC) uses a penalty of ½ log N for each parameter. There is some feeling among information 

theorists that the AIC is too lenient on extra parameters, but the BIC is too punitive. The Hannan-

Quinn Information Criterion, HQIC, is intermediate. It gives a penalty of log log N for each para-

meter. It turns out that most of the conclusions are the same for each criterion, so until a difference 
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arises, only the BIC will be used. For N = 1260, the penalty is about 3.57 per parameter. Thus an 

extra parameter has to improve the NLL by that much to be justified. 

LC and RH Poisson models were fit to male and female mortality. For both data sets, the RH 

model fit quite a bit better than LC. The RH NB1 and NB2 models were then fit. Table 1 shows the 

NLL for each model and the improvement in NLL required to meet the BIC requirement for the 

extra parameters from the model above it. After the parameter constraints there are 35 a parame-

ters, 34 b parameters, and 35 h parameters, so the LC model has 104 parameters. In the RH model 

there are 34 c parameters and 69 u parameters, for cohorts 1882 – 1951, ex 1946. Thus it has 207 

parameters. The negative binomial versions have yet one more parameter. 

 NLL Parameters 
Added 

BIC Needed NLL 
Improvement 

NLL Improvement 
Model Female Male Female Male 
LC Pois 13670 14868     
RH Pois 9598 10081 103 368 4072 4787 
RH NB1 8798 8996 1 3.6 800 1085 
RH NB2 8748 8972 0 0 50 24 

Table 1 – Fit Comparisons 

The LC model fits considerably worse for males, with an NLL 1198 higher than for females. The 

RH model fits much better for both, with an improvement in NLL of 4072 for females and 4787 

for males, compared to an improvement of 368 required to justify the extra parameters according 

to BIC. The difference between male and females is narrowed to 483, so it is a substantial im-

provement for males. Adding the extra parameter for NB1 also significantly improves both fits, and 

NB2 is a bit better yet. The  parameter for NB1 is about 2.5 for females, and 3 for males, so the 

variance for each cell is 3.5 to 4 times the cell mean, compared to equal to the mean for Poisson. 

That is a substantial difference and with variances that big it is no wonder the Poisson fit is not as 

good. The r for NB2 is about 8600 for females and 7500 for males, which for this data translates to 

variances of 2 to 7 times the mean, with the higher ratios going to the larger cells. The best NB 

NLLs for LC were 9444 for females and 9652 for males, so LC Poisson is so bad due to Poisson. 

To give a visual impression of the fits, the empirical and modeled values of log m are graphed for 

a few years of death by age at death for the Poisson models. The graphs do not look much different 

for the negative binomial models, and in fact the parameters are not that different either. The ad-

vantage of the negative binomial models is more in the error distributions than in the fitted means. 
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Essentially the cells with higher variance are not penalized as much in the likelihood functions for 

being different from their means, so the fit gets better for the smaller cells. This is not enough to be 

very noticeable in the graphs, however. 

 

Figure 1 – LC Female 

 

Figure 2 – RH Female 
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Figure 3 – LC Male 

 

Figure 4 – RH Male 
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Figures 1 and 2 show the female data and fits. The log m values have been rotated by a linear 

function of age at death in order to make them more horizontal, which facilitates comparison. 

Figures 3 and 4 are similar for males, but more years are able to be shown as the trends were 

greater for males, which separates the curves a bit. The more recent years are at the bottom of the 

graph, as that is where the mortality is the lowest. The dotted lines are the data and the solid lines 

are the model. 

For males, the downward trend from year to year is less at the older ages. The LC model is able 

to handle this aspect by having lower b factors for the older ages. When the LC model misses, it 

seems to be mostly for the youngest and oldest age groups. By adding in cohort parameters, the RH 

model can account for many of these effects. However some of this is suspicious, as some of the 

cohorts have few observations in the data. Hence the modeled mortality at age 55 is higher in 2006 

than in 2001, which follows the data, but that in itself does not establish 1951 as a high-mortality 

cohort.  

For females the shape of the graph is somewhat different than for males, and there is not so 

much diminishing trend at older ages. The LC model does not have enough flexibility to capture 

the changes in shape, and some of the years have long strings of significant errors of the same sign. 

The RH cohort-effects are able to adjust for a lot of this, but again this is sometimes because of 

cohorts with only a few observations, such as age 55 for 2001 and 2006. 

The RH model provides clearly better fits both by graphical tests and penalized MLE. Although 

the fits are worse for males, the difference narrows considerably for the better-fitting models. The 

negative binomial versions are much better than the Poisson, with the NB2 a bit better fitting than 

the NB1. There are some plausibility problems with the RH model, however. 

3. Interpreting the Parameters 

The best-fitting NB2 parameterizations are used in this section, but first, does the fact that NB2 

fits better than NB1 have any implications? NB2 is the form that comes from mixing a Poisson by a 

gamma distribution. This arises in experience rating, for instance, where each policy is Poisson dis-

tributed, but there is a gamma distribution of Poisson means across the population. Taking a policy 

at random, its distribution of claims is conditionally independent given its Poisson mean, but un-
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conditionally correlated due to the common Poisson mean. This is thus a way of modeling non-

independent claims, or contagion.  

It is tempting then to argue that the population as a whole is a mixture of groups with different 

mortality, due to different lifestyles, access to medical care, etc., and that is the source of the con-

tagion observed. However that is a different kind of mixture. The population as a whole consists of 

all the groups taken together, not one drawn at random. The sum of independent Poisson distribu-

tions is itself Poisson, so the mixture argument does not explain contagion at the level of the entire 

population. Moreover, the number of deaths is the sum of Bernoulli processes and would be bi-

nomial, not Poisson, if there were not already some source of contagion to begin with. 

There are factors affecting mortality rates for the population as a whole, such as weather, flu 

outbreaks, etc., that make deaths not independent. This seems the principal source of contagion at 

the population level. The NB1 model makes the variance about 4 times the mean for each cell in 

the data, whereas for the NB2 model it ranges from about 2 to 7 times the mean, with the factor 

larger for the larger cells. The fact that NB2 fits better suggests that the contagion events hit the 

larger cells harder. That is, the ages with the greatest number of deaths also have the greatest in-

creases in deaths when adverse conditions arise. 

Starting with the ad parameters, which represent the base log mortality rate by age, before appli-

cation of trends and cohort effects, Figure 5 graphs ad for males and females. 

 

Figure 5 – ad Parameters 
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Male mortality is higher than female at all ages, but that does not show with these parameters. 

The calendar-year parameters and cohort parameters interact with these so in themselves they are 

not that meaningful. 

 

Figure 6 – ht Parameters 
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Figure 7 – Trend Age Modifiers bd 

 

Figure 8 – Cohort Parameters ut-d  
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the cohort that would apply at all ages, but because not all ages are in the data, the most it could 

represent is a conditional differential, conditional on having lived long enough to get into the data 

in the first place. Such an effect would be further enhanced by the fact that the oldest cohorts only 

appear in the oldest ages in this data. 

 

Figure 9 – Cohort Effect by Age Parameters cd 
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4. Fixing the Fits 

One of the problems with the fits above is the sparsity of data in many cohorts. Another is the 

high correlation among parameters in the female model, which is discussed later. For the recent 

cohorts the only way to add data is to wait. For the older cohorts, however, there is data available. 

Extending the data to include all calendar years of death for cohorts 1882 – 1915 with death ages 

55-89 is possible, and this increases the number of observations to 35 for each such cohort. This 

would be expected to give better estimates for those cohort parameters ut–d, but also for the cd pa-

rameters that modify the cohort parameters for age effects, and indirectly on all the other parame-

ters, which may have less flexibility to fit to random fluctuations in the data. The original data will 

be referred to as the partial data and the expanded set as the full data. 

The per-parameter penalty log(N)/2 for BIC goes up to 3.763, with 1855 observations, from 

3.569 for the 1260 observations in the partial data. The full data need calendar year parameters ht 

starting with 1937 (assuming zero at 1936) instead of from 1972, so the models have 33 more pa-

rameters. There are no additional a, b, c or u parameters. Thus the LC model now has 137 parame-

ters and the RH negative binomial models have 242 parameters.  The full sequence of models above 

was fit but now the NB1 fit better for males. To resolve this, more distributions were fit for the RH 

model. The NB3 is intermediate between the NB1 and NB2, the Poisson-inverse Gaussian (PiG) is 

similar to the negative binomial, but is more skewed, and the Sichel is a three-parameter generali-

zation of the PiG which can be more or less skewed than the PiG but not less skewed than the NB. 

These distributions are discussed further in Appendix 1. The results are: 

 NLL Parame-
ters Added 

BIC Needed     
Improvement 

BIC Improvement 
Model Female Male Female Male 
LC Pois 21,726 24,047     
RH Pois 15,452 16,630 103 388 6274 7417 
RH NB1 13,176 13,567 1 3.8 2276 3063 
RH NB2 13,172 13,576 0 0 4 -9 
RH NB3 13,163 13,568 0 0 9 -1 
RH PiG 13,172 13,567 0 0 -0.4 0.015 
RH Sichel 13,172 13,565 1 3.8 0 2.2 

Table 2 – Triangle Fit Comparisons 

Again the RH model provides a tremendous improvement in the fit, as does moving from Pois-

son to negative binomial. The NB3 is the best fit for females, but the NB1 is the best NB for males. 
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The difference between the NB models is that VM, the variance/mean ratio, is fixed at 1+ for the 

NB1, is 1+/r for the NB2, and is 1+ (/r)½ for the NB3. For females the cell means range from 

6000 to 44,000. With the fitted parameters this gives VM of 5.1 for NB1, 2.4 to 11.1 for NB2, and 

3.4 to 7.4 for NB3, which gives the best fit. For males the NB1 VM is 6.1. Another version of the 

NB discussed in Appendix 2 fits slightly better with a range for VM of 5.3 to 6.7, but uses an addi-

tional parameter which does not give enough better fit to justify it.  

The improvements shown for the last three models are from the better of NB1 and NB2. The 

PiG and Sichel models also have 1, 2, and 3 versions like the NB. For females, the 2 version of the 

PiG was found to be slightly worse than the NB2, indicating that the additional skewness was not 

helpful. The corresponding Sichel has the NB2 as a limiting case, but otherwise has higher skewness 

than the NB2 with the same mean and variance. The fact that it did not give any improvement over 

the NB2 suggests that if anything, less skewed distributions may fit better for females. 

For males the PiG, version 1, was very slightly better than the NB1. The Sichel fit even better 

with an intermediate skewness. However the improvement in NLL is problematic. At 2.2 it is less 

than the 3.8 required by the BIC, but better than 1, which the AIC requires, or 2.0, which the 

HQIC calls for. There is a good deal of literature suggesting that BIC is too stringent in rejecting 

parameters. Burnham and Anderson (2004) make a strong push for AIC and the small sample AIC, 

based on the idea that the sample is not generated from the model being fit, but rather the model is 

a fairly compact representation of a more complex process. For a sample size of N and p parame-

ters, the small sample AIC penalizes the NLL by Np/(N–p–1). With N = 1855, the additional pe-

nalty for the 243rd parameter over the 242nd is 1.32. Thus the AIC, HQIC, and small sample AIC all 

support the additional parameter for the Sichel distribution in this case. Thus it will be taken as the 

best fitting model. 

The parameters shown below are from the best fitting Sichel model for males and NB3 model 

for females. It appears that the full data helps with the male model but does not solve the problems 

with correlation in the female model. 
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Figure 10 – Base Mortality – a Parameter 

 
 

The a parameters look quite reasonable for males but strange for females, especially the decline 

for the oldest ages. 

 

Figure 11 – Calendar Year h Parameters 
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Figure 12 – Trend Effect by Age at Death – b Parameters 
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Figure 13 – Female Cohort Effect u 
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overall downward trend in mortality, which matches the data, but is not intuitive as an explanation 

of the data. 

 

Figure 14 – Male Cohort Effects for Partial and Full Cohorts 
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Figure 15 – Age Impact on Cohorts – c Parameter 
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 a h b u C 

a 98.9% 98.2% 9.4% 97.6% 34.1% 

h 98.2% 98.9% 8.4% 98.4% 31.6% 

b 9.4% 8.4% 40.9% 8.5% 30.5% 

u 97.6% 98.4% 8.5% 97.9% 31.3% 

c 34.1% 34.1% 30.5% 31.3% 56.5% 

Table 4 – Average Absolute Value of Correlations by Parameter Types – Females 

The extremely high correlations among the a, h, and u parameters in the female model makes 

the individual parameters highly questionable. There could be many local maxima of the likelihood 

function, and there is no guarantee that the parameters found are a global maximum. Even if they 

are, the correlations make the parameter values unstable. In fact, the partial and full data sets gave 

opposite but similarly offsetting directions for the female calendar year and cohort trends. 

This shows up in the t-statistics as well, which are near 1 in absolute value, so not significant, for 

all the h and u parameters in the female model. 

Moving to the full cohorts then appears to improve the male model, which has reasonable para-

meters and correlations among parameters, as well as significant t-statistics. For the female model 

the high correlations (which though not shown are similar for the partial cohorts) make the fit prob-

lematic. 

Usually when there are high correlations, the solution is to leave out some variables. But the 

greatly improved fit of the RH model over the LC model appears to rule out omitting the cohort 

parameters. Parameter reduction through smoothing would still leave quite problematic parameter 

values as well. One option may be to keep the cohort parameters but not the calendar-year parame-

ters, making the trend a purely cohort matter. It does not seem likely that this would give a good 

fit, but it might be worth trying.  

Another option would be to set the base mortality a parameters as the average or some weighted 

average of the mortality rates for each age in the full data. This was actually Lee and Carter’s initial 

recommendation. This would give the other parameters less opportunity for mischief. A similar 

approach could be to use a parameterized curve, like Makeham or splines, for the base mortality. 

Yet another possibility might be to multiply the cohort and calendar-year parameters, and then ap-

ply a single age parameter to the product. This type of model is used extensively in casualty loss 

reserving, but has had mixed results (informally communicated) in mortality studies. 
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5. Projection Risk 

Projection risk can be calculated for a particular dataset of annuitants, which is not what is avail-

able here, but some general observations on how to carry out such a calculation are presented. 

To begin, the calendar-year trend levels have to be projected. Standard time-series methodolo-

gies produce ever-widening ranges as the trend continues. However here there is another wrinkle, 

as the points being trended are estimated parameters, and so are observed with error. An area of 

regression studies is errors-in-variables models, which has a number of potential methods. If the 

variances of the h parameters have been estimated and they are relatively constant, then a simple 

reasonable simulation of a future level could assume that same variance, and do a simulation of the 

actual future level from the already-simulated contaminated future level from the trend intervals. 

A number of mortality modelers have used AR1 models for the annual difference in levels, 

usually with a negative autocorrelation, to project the trend. Most of these do not take into account 

the errors-in-measurement issue. For an independent series measured with a constant error va-

riance, differencing induces an autocorrelation of -50%, arising from the same error having oppo-

site signs in consecutive observations, so the AR1 model may be distorted by the induced autocor-

relation. Some mortality projection studies have used the Kalman filter, which recognizes mea-

surement errors, to project the levels, but if that is based on a random walk it can have too much 

autocorrelation. An alternative to both is the area of state-space models, which provide generaliza-

tions of time-series and Kalman filter models.  

If projections are needed for cohorts not in the study, then trending cohorts also has to be consi-

dered. Even the use of the recent cohort parameters should take into account their potential mea-

surement errors, perhaps with a state-space model. 

Parameter uncertainty can be implemented by simulating the parameters from the covariance 

matrix based on the Fisher information matrix from the estimation. The information matrix gives 

an estimate of the covariance matrix of the parameters. Asymptotically the parameters have a mul-

tivariate normal distribution with this covariance matrix, so they can be simulated using the normal 

copula, Cholesky decomposition, etc. Even though the error distributions are asymptotically nor-

mal, they may not be normal for a finite sample, and other distributions could be used to simulate 

parameter risk, perhaps inverse gamma, which is the exact error distribution for some models, and 
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approaches the normal asymptotically. Other distributions that approach the normal could also be 

used. One criterion is that the normal should not be used if  there is too much probability that a 

parameter that has to be positive could be simulated as negative from the normal. 

Once a routine is in place to simulate parameters and to trend the h and u parameters, the num-

ber of deaths can be simulated from the negative binomial or Sichel distribution. If a routine to do 

this is not available, probably simulating from a transformed gamma with the same first three mo-

ments would not be too far off. 

Model risk is a more difficult issue. The RH-Sichel model appears fairly reasonable for the male 

data, but the cohort parameters for the last several cohorts are questionable, being based on few 

observations. Parameter uncertainty should be large for such parameters. Perhaps using the models 

but including extra parameter uncertainty for model risk would give usable results. 

5. Summary and Future Directions 

The RH model fits much better than LC, both for the Poisson and heavier tailed distributions, 

which is what other studies have also found. Basically the shape of the mortality curve has been 

changing more than LC can accommodate. Also the negative binomial fits better than the Poisson, 

which has been seen before and is also likely to be a standard result. The best form for the NB is not 

consistent, however, and may differ for different datasets, depending on how contagion actually 

applies. For males the Sichel distribution is better still.  

Model risk is an issue, since the RH model can fit well at the ends of the age range using cohort 

parameters based on few observations. Using full cohorts can reduce this possibility at the older 

ages but not at the youngest ages. Also the RH parameters can be highly correlated, as in the female 

model, suggesting that some other model should be found, possibly by reducing the number of pa-

rameters. 

Projections of mortality risk under current methodologies are thus likely to be unreliable. But 

better-fitting models are not likely to solve this problem as the RH model fits extremely will. Per-

haps other models can be found with fits intermediate between LC and RH but with more parame-

ter stability than RH. 



 22 

References 

[1] Burnham, K.P. and D.R. Anderson 2004 “Multimodel Inference: Understanding AIC and BIC in Model Selec-
tion,” Sociological Methods Research, 33: 261-304.  

[2] Hannan, E. and B. Quinn 1979 “The determination of the order of an autoregression,” Journal of the Royal 
Statistical Society B(41), 190–195. 

[3] Lee, R.D., and Carter, L.R. 1992 “Modeling and forecasting U.S. mortality," Journal of the American Statistical 
Association, 87: 659-675.  

[4] Renshaw, A.E., and Haberman, S. 2006 “A cohort-based extension to the Lee-Carter model for mortality re-
duction factors," Insurance: Mathematics and Economics, 38: 556-570. 

[5] Rigby, R.A. D.M. Stasinopoulos, and C. Akantziliotou. 2008. “A framework for modelling overdispersed count 
data, including the Poisson-shifted generalized inverse Gaussian distribution,” Computational Statistics and Da-
ta Analysis 53: 381-393. 

 

Appendix 1 – Count Distributions 

The negative binomial distribution has two parameters r and, with mean r and variance 

r(1+). In the full data there are 1855 cells, and when the negative binomial is used, each cell has 

a value of r and . The mean  = r is the value given by the RH model, but how r and  vary 

across cells depends on how the model is set up. In the NB1, it is assumed that every cell has the 

same value of , so the ratio of variance to mean is 1+ for every cell. In the NB2 every cell is as-

sumed to have the same value of r, with  set to /r, which gives variance to mean ratio 1+/r, 

which is higher for the cells with higher means. However there are many other ways the parameters 

can vary across cells. For instance, suppose there is a constant q for all cells, with r and  given by r 

= q½ and  = ½/q. Then the mean is still r = , and the variance to mean ratio for a cell is 1+ 

½/q. This is what is called the NB3 in the text. Its variance/mean ratio is still higher for the larger 

cells, but not by as much as in the NB2. 

This can be generalized to the NBp distribution, which adds a parameter p to control the va-

riance/mean ratio. It sets r = q1 – p and  = p/q. The mean is again r = , but now the variance 

to mean ratio for a cell is 1+ p/q. The value of p can be found by MLE. For males the resulting 

value of p is 0.2, but the NLL is not enough better to justify the additional parameter by any of the 

information criteria. For females the p is 0.53, but again this did not improve the NLL enough to 

justify the extra parameter. It might be argued that the NB3 already has an extra parameter of p = 

½, but this is a bit ambiguous as the parameter is not free to be fit. In this case the NB3 fits the fe-
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male data by enough better to justify an additional parameter. 

When fitting a single NB distribution to a data set, all of these forms are the same. The differ-

ence comes when fitting a number of distributions to a number of cells where a common relation-

ship of variance and mean is desired. The NBp forms discussed here by no means exhaust the possi-

ble such relationships. In general if the variance/mean ratio desired is 1+G(), just set r = /G() 

and  = G(). For instance, G() = q log() might work in some cases, possibly even for the male 

data in this paper. 

The Poisson – inverse Gaussian distribution can be derived analogously to the NB as a Poisson 

mixture, but now the Poisson parameter is mixed by the inverse Gaussian instead of the gamma. 

Again it has 1, 2, 3, and p versions, etc. The inverse Gaussian is 50% more skewed than the gamma 

with the same mean and variance, and the PiG inherits this greater skewness, although not by the 

same ratio. The third central moment divided by the mean is the 3rd moment analogue of va-

riance/mean for count distributions. For the negative binomial this is 1+3+22, while for the 

PiG it is 1+3+32. For =5, which is fairly typical in the fits here, that gives 66 for the NB and 

91 for the PiG, both of which would have variance/mean = 6. 

The Sichel distribution is a generalization of the PiG and is a Poisson mixed by a generalized in-

verse Gaussian. It can be more or less skewed than the PiG but not less than the NB, which is a li-

miting case. It uses the modified Bessel function of the second kind (sometimes called the third 

kind), 𝐾𝜈 𝑡 =
1

2
 𝑥𝜈−1 exp  −

1

2
𝑡 𝑥 + 𝑥−1  𝑑𝑥

∞

0
. 

The Sichel distribution with parameters r, , and  can be most readily expressed with two aux-

iliary parameters c and s, with c = K(r)/K+1(r) and s2 = 1+2c. The probability function at j is: 

   𝑝𝑗 =
(𝑟𝛽𝑐 )𝑗

𝑠𝜈+𝑗 𝑗 !

𝐾𝑗+𝜈 (𝑟𝑠)

𝐾𝜈 (𝑟)
  

This is a reformulation of the version given in Rigby et al.(2008). Their parameters can be 

mapped from these by taking = rs,  = 1/r,  = r, and c = 1/c. 

The PiG is just the case  = –½, for which c = 1. The Sichel mean is still r and the variance is 

(1+h) with h = 2c(+1) + (c2 – 1). For the PiG, this simplifies to h = . The Sichel ratio of 

the third central moment to the mean is 3/ = 1+ 2(c–h) + 3h +2ch(+2). 
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The  parameter can be very different than –½, and for the male data here was estimated as 

2155. The  parameter was close to 6, and r was set at /. The resulting third moments were 

usually intermediate to those of the PiG and NB. 

Appendix 2 – Fitting Notes 

With several distributions to be fit, routines were sought that did not use derivatives of the NLL 

or could use numerical derivatives. The R package subplex uses an efficient form of the simplex 

algorithm, and was found useful in getting rapid improvement in the NLL from initial guesses. 

However it seemed to have difficulty in final convergence, often ending up in a region where the 

NLL was changing very slowly but was not near a minimum. Running sublex 2 or 3 times with de-

fault settings usually helped a good deal.  

From there the optim routine in the Stats package was found to be useful in proceeding more 

towards a minimum. The optim option used most often was BFGS with gr=NULL, which takes fast 

approximate numerical derivatives of the NLL to find the best direction for improvement. Usually 

it would start off with only small improvements, but usually ended up finding a region where more 

rapid improvement was possible, then slowing down again near to convergence. Relative and abso-

lute convergence criteria of 1e-17 and 1e-12 were used, which may be beyond machine precision. 

However the routine would converge, although usually not to a true minimum.  

The next step was to define a gradient function of the parameters using numerical derivatives 

from the numDeriv package. This is a slower but more accurate gradient, and using BFGS with it 

always improved the fit. The problem is that the convergence is defined by the NLL not changing 

much, which does not always end up with all derivatives very close to zero. Since the 2nd deriva-

tives at the minimum are needed for the information matrix, it seemed a good idea to make the de-

rivatives reasonably close to zero. For this the routine dfsane from the BB package was found help-

ful. In perhaps 50 iterations it could find points close to the optim parameters but with a reduction 

of 2 or 3 orders of magnitude in the largest (absolute) derivatives.  It usually produced only very 

small changes in the NLL from what optim had yielded, however. 

For the Bessel functions, the base R package function does not work with high values of the in-

dex (say  > 1500). There is a Bessel package available for Windows in R-Forge. It has a function 
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besselK.nuAsym that does work for large values of the index, but not for small values. It needs an 

additional package Rmpfr, which is available on CRAN. 

There are recursive formulas for the PiG and Sichel probabilities, but these are awkward at best 

for probabilities for tens of thousands of events. 

The parameter constraints that force some parameters to be zero or one are different from much 

of the literature, which uses constraints on the sums of parameters. However doing it this way 

helps guarantee that the information matrix is not singular, which is necessary for its inversion. 

(Yilu Zhang and Lina Ma helped research the R methodology for fitting distributions used here.) 


