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Abstract

The problem of what mortality tables to use for injured worker pension
reserves is not a new one for casualty actuaries. A study of this issue
appeared in the 1945 PCAS. We looked at the data from that study using
computer intensive non-linear regression to modet the ratio of injured worker
to standard mortality.

The mothadalaoav and como af the conclugiong mav gl hoe
ine melhodoiogy and some of e COnausIions may sl oe

applicable today.
In particular, injured worker mortality after some years comes close to
standard mortality, and after some age may actually be lower. Because of this,
not much credit can be taken on pension case reserves, even though for

younger workers initial mortality is much higher than standard.
Some technical issues in non-linear regression are addressed, including a

method to adjust for heteroscedasticity and using the information matrix to
measure the significance of the parameters.
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REVIEW OF REPORT OF COMMITTEE ON MORTALITY FOR
D

Loss reserves for workers compensation cases in the U.S. now are in the area of

11 H 3 1 i ey Trricaall +andned
$50 billion, much of which is tHed up in long term cases. Typically standard

mortality is used to reserve these cases, but in serious cases a factor (e.g. 10) is
applied to the mortality rates on a judgment basis, as in Snader (1987). Some

digabled life tables have been calculated from other benefit systems, involving, for

example heart disease or cancer cases, but these are probably not appropriate for
injured workers.

Faced for the 25 years since the inception of workers compensation insurance with
the need for injured worksr mortality tables, the CAS decided to take action, and in
1937 appointed a Committee of Three to investigate the feasibility of undertaking a
study. Coincidentally, the Committee of Three came up with three conclusions:

1. Very substantial results could not be expected from the data then available.
2. A start should be made in order to get carriers to keep appropriate records.

3. It was as feasible then as it would be at any later time to do a mortality
study based on the statistical system in place.

Thus, working with the Nationai Council on Compensation Insurance, a call for
disability data was sent out in October 1938. The data used in the study was for
accident years or policy years 1930-1935, depending on how carriers reponed and
the first year of uisauuuy was excluded from each case. mHLIOLIgu the first year
after the accident was excluded, the data represented fairly new claimants, who

might be expected to display higher mortality than more stabilized cases. The

ults of the study would thus be mest applicable to such cases.

This review looks at the data from that study to see if there are any relationships
between disabled worker mortality and standard mortality that might endure to the
present. A regression methodology is used to explore this question. As the uniform
variance assumption of least squares regression is not met, a method for dealing
with this heteroscedasticity is developed.  The information matrix from the
(non-linear) regression is used to test goodness of fit and to develop prediction

intervals.
COMMITTEE REPORT

The report of the committee on mortality for disabled lives produced a mortality
table for lives disabled by industrial accidents. The table 15 based on permanent
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total cases and nondismemberment permanent partial cases involving 50% or more
disability. In total there were 8,598 life years of exposure with 285 claim
terminations. The 285 claim terminations included deaths and the few cases where
the injured person recovered. These claim terminations did not include cases where
permanent partial disability followed permanent total, the benefit period ended, or a
lump sumn settlement was made. Since the mortality table in workers compensation
is primarily used to determine expected claim size it is appropriate to include
terminations due to either death or recovery. An alternative method is a multiple
decrement model in which deaths and recoveries are measured separately. However
the committee chose to consider both types of terminations together.

In the original study, mortality rates for each age were calculated based on the
reported data. For those ages with sparse data, below age 22 and over age 73, the
reported mortality rates were weighted with the mortality rates from the 1930 U.S.
life tables for white males. The resulting mortality rates for ages 10 to 105 were
graduated using the Whittaker-Henderson technique. Mortality tables were then
constructed with these mortality rates.

The authors state that the montality rate for these disabled lives is 144% of that for
white males in the 1930 U.S. Life Tables. This was determined by comparing the
expected number of deaths in the next year under the disabled workers table of
mortality rates versus the U.S. Life Table mortality rates. The expected number of
deaths is determined by multiplying the number of lives exposed for each age group
by the respective mortality rate and summing for all ages. It is clear from the data,
however that this 144% varies dramatically and systematically by age.

RELATIONSHIP BETWEEN DISABLED WORKER MORTALITY AND
STANDARD MORTALITY

We projected the mortality rates for disabled workers based on our hypothesis that
the ratio, g,/q,, between the mortality rate for disabled workers, q,, and that of the
U.S. population, q,, is a decreasing function of age. This is an alternate method of
graduation to the Whittaker-Henderson formula used by the committee. Initially we
set the mortality rate of disabled workers equal to a constant plus a power of the
mortality rate of the U.S. multiplied by a function of age;

qs = a + q° x f(age)
We found that the constant, a, was insignificant. In all regressions attempted of q,
on q, and age our estimate of the power of q, was approximately one. Together

these suggest that the ratio of q,/q, can be adequately expressed as a function of
age.
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Let y, be the ratio of observed disabled worker mortality to U S. population standard

e o TR

moriality at age +. A fairly simple model was found to fit quite well:
¥ = be” + g ; with b = 0.32 and ¢ = 84

The ratio of the parameter to its estimated standard deviation is 3.72 for b and is
10.83 for c.

Graph 1 shows three regressions of y, on be™ with the parameter ¢ set equal to 1,
40 and 84. The graph illustrates the importance of ¢ in the model.

In addition, in graph 2 a comparison of the ratio of q,/q, to the confidence intervals
for the model indicates heteroscedasticity (the variance around the fitted line is not
constant over age). The observed q,/q, has a much greater variance at younger ages
where, on average, q,/q, is greater. Therefore rather than assume the constant
variance of standard least squares regression it was assumed that errors were
normally distributed with mean equal to zero and standard deviation proportional to
the mean of the regression. This is referred to as the multiplicative error model and
is described further in Appendix 1. The distibution of the error term ¢ is
approximated by a normal distribution:

g =y, - bet ~ N(Obe™cP) where ¢* = constant of proportionality

In Appendix 1 it is shown that this modei can be fit by a standard regression with
the "dependent variable" set equal to one , and y/be™ as the independent variable.
Then the parameters b and ¢ are found to be, respectively, 0.35 and 88 which are
respectively, 6.86 and 13.08 times the estimaied parameter standard deviations.

Graph 3 shows the observed data along with the confidence intervals for this
multiplicative model. This illustrates the basis for the assumption that the standard

deviation of ¢, is proportional to the mean, in that the model confidence intervals

more closely approximate the data variations. Table 1 compares the observed y, and
the values from the two fitted models.

To estimate the standard deviations of the parameters for this model we calculated
the variance-covariance matrix which is the inverse of the information matrix as
described on page 81 of Loss Distributions by Robert V. Hogg and Stuart A.
Klugman. The calculations of the information matrix and its resulting
variance-covariance matrix for both the constant variance and the proportional
variance model are described in Appendix 2.

A comparison of mortality rates for 1930 and 1980 from the U.S. Life Tables and
the projected mortality rates for disabled workers based on the models is shown in
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DISCUSSION

The hypothesis that the ratio between the mortality rate for disabled workers versus
the population, q,/q, is a decreasing function of age is supported by the data
analysis described above.

It is possible that the ratio q,/q, is closer to one now than is reflected in the 1930’s
data. The improvements in mortality of the general population may be heavily
influenced by a disproportionately larger improvement in the mortality of disabled
people. It will require another study of disabled workers mortality to determine if
disabled worker mortality is now closer to standard mortality.

At an advanced age, there is a crossover point at which the mortality rate of
disabled workers becomes less than that of the general population (Table 2). With
the committee's method this occurs at age 81. With the multiplicative error model
the crossover occurs at age 85. It is reasonable to assume that since these disabled
workers had recently been in the work force at an advanced age they were healthier
than the general population. The permanent injuries received were not necessarily
serious enough to increase the mortality of these exceptionally healthy individuals to
the level of the general population at that age.

In fact a fairly minor injury may be "permanent” at an older age in that the person
may not return to work. This may contribute to the existence of a crossover point
since permanent disability benefits supplement retirement income for older workers
and could thus discourage return to work. Since on average today’s workers retire

earlier than they did in the 1930’s the crossover point may be earlier now.

Below are the annuity values for certain ages calculated with the 1979-81 U.S. Life
Tables and with estimated disabled workers’ mortalities based on the proportional
variance model. These annuity values contain an interest rate assumption of 3.5%
and escalating benefits are assumed to increase at 7% per year.
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U.S. Life Table Disabled Mortality
oa  Nonacealatine Eecalating Nonescalatine Foealating
Age iNonescalating Dscaiatng aonescaating Dscalating
25 22.756 136.298 20.272 111.229
45 17.776 58.464 16.631 52.366
65 11.009 21.442 10.507 20.364
85 4.606 6.117 4811 6.486

These disabled worker mortalities are created from the general population of
permanent total disabled workers and may not apply to the most severely injured
workers. As mentioned earlier since the mortality rates are based on recently
injured workers they may not be appropriate for claimants who have been disabled
for many years. The disabled worker annuity values do not change drastically from
those for the general population but they do decrease. However for advanced ages
the annuities under the disabled worker mortalities are actually greater than under
the U.S. Life Table mortalities.

CONCLUSIONS

1. model which declines with age seems appropriate for q,/q,, the ratio
between the mortality rate for disabled workers and that of the US.
population,

2. At some age this ratio goes below unity and this may now occur at an
earlier age.

3. The impact of the disabled mortality rates on the annuity values was
moderate then and would probably be even less now.

4, These results may not be applicable to the first year of injury when
higher mortality rates are likely or to longer period after injury where
mortality rates closer to standard are expected.



Table 1

Ratio of . . .
Observed Fitted Ratio  Fitted Ratio
Mortalxtg Rate from from
to 1930 Constant Proportional
g.5. Standard Variance ariance
Age Mortality Rate Hodel (1} Model (2}
il 8,2541 10.6254 13,7001
25 9,6604 9.2313 11,8330
26 14.7013 4115 10.3362
2 .0420 1.2020 9,119
28 .6410 6.4446 8.1185
29 2.1841 5.8113 1.2859
30 6.3171 5.2764 6.5853
31 5,2512 4.8207 5.9914
3 .9615 4.4293 5.4833
EX} 000 4,0907 5.0453
k! 4568 3.7956 4,665
35 3.9529 3.5369 4,339
36 1.1813 .3088 4.04¢
kY| 2.0036 3.1066 3.7828
38 4.4908 .9264 3.553%
38 3.2110 1632 3.3489
40 2.1517 .6202 3.1654
) .3040 L4834 3.0002
42 .2320 .3709 2.8509
43 .1564 .2631 2.7154
44 9405 .1648 2,592
45 2.8654 2.0749 .479%6
46 1.7136 1.9924 .3765
47 2.4772 L9165 .2818
48 1.5980 .8464 1946
49 2.3456 .1816 L1141
50 1.5227 1.7216 .0336
51 2.8791 1.6658 .9705
52 1.2276 .6139 .9062
53 1.3889 .5654 8464
54 1.3349 .5201 7905
55 1.5800 4778 7383
56 1.6526 .4380 6894
57 1.6292 .4006 1.6435
58 1.8961 .3655 6004
59 0.5384 .33 5598
&0 2.1415 3012 5213
61 1.6078 2116 4854
62 1.7536 431 513
63 1.3142 L2172
64 0.7567 .1921 3884
63 1.1449 .1683 399
66 0.97%0 457 331
61 1,2446 1241 305
68 0.6668 .1036 280¢
69 0.7997 .0840 .
10 0.2978 .063 2342
1 0.989] .0474 1.2126
it 1.5846 1.0304 1.191
13 0.8659 1.0140 1.112
41 0.9447 0.9984 .183
15 1.3363 0.9834 135
76 0.8882 0.9690 117
n 1.6805 0.9552 1.1010
8 1.1974 0.9418 1.0850
79 0,6338 0.92%2 L0897
80 0.4526 0.9169 .0549
8l 1.3872 0.9051 .0407
82 1.1605 0.8937 1.0270
83 0.6815 0,8828 1.0138
84 0.3539 0.8722 1.0011
83 1.2400 0.8620 0.9889
86 0.5859 0.8521 0.9770
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U.s. Life Table

tQx

L0037
L0037
L0037
.0038
L0032
.gou0
.00ul
L0043
004G
L0046
Rl
L0051
.0053
.00546
0060
. 00464
0048
L0073
-0078
.0082
.0087
L0093
. 0099
L0105
0112
- 9120
.0128
L0138
0146
0157
L0169
.0182
L0197
.0212
. 0229
0246
. 0264
. 0284
- 0305
, 0330

1930

Disabled Mortatity

Table 2

1980

Disabled Mortaltity

Raw Data

tQx”

L0302
. 0358
. 0551
L0306
L0103
.0088
. 0263
. 022y
.0219
.0000
0411
.0202
. 0063
L0113
. 0248
.02085
.01us
L0093
L0096
.0178
. 0297
0266
L0169
L0261
L0179
. 0281
L0195
L0393
L0179
L0217

.0225%

.0287
(0325
03us
.03y
L0132
. 0564
. 0uSé
. 0538

L0433

Committee

tQx "’

. 0259
. 0255
0250
L0243
0234
.0227
.0218
. 0209
, 0201
L0192
.0185
.0178
L0173
0169
0166
0165
0166
0169
017y
.0180
. 0187
L0195
. D204
L0214
. 0224
L9234
. 8245
L0256
.0248
. 0281
. 0294
.g3o08
. 0322
. 0335
L0347
. 0358
03567
L0376
.0383
L0391

Fit(REG)

tQx" "

.0389
L0343
L0304
L0274
.0251
. 0234
.0218
.0205
0196
. 0189
. 0184
. 0180
L0177
L0175
L0175
0176
.0178
. 0181
JQisy
0187
0189
L0193
L0197
L0202
. 0207
L0213
. 0220
0227
0235
L0245
. 0256
18269
.0283
.0298
L0313
.0328
L0344
L8361
, 0380
0401

FitHax) uU.8. Life
Table
tQx AGE tQx tQx' ' 1Qx' "’
i8 .0013 0919 0701
19 0016 L0435 . 0585
20 0017 L0374 0499
21 0019 0326 , 0430
22 L0019 .0282 L0359
23 0019 . 823% 9310
0501 24 L0019 .0201 . 0259
L0439 25 .0018 01869 0217
. 0388 24 L0019 ~01uy .0183
L0347 27 L0017 L0124 L0157
0317 28 L0017 0108 « 01346
L0283 29 .0017 . 0097 0122
. 0272 30 L0017 .oo0s8 -010%9
. 0255 31 L0016 .0080 .0099
L0242 32 .0017 L0074 0091
. 0234 33 L0017 L0069 . 0985
0227 34 L0017 L0066 .0082
.0221 35 .0018 L0065 . 0080
0216 36 .0020 L0065 0079
L0213 37 L0021 L0065 L0079
0212 38 L0022 L0046 . 0080
L0213 3?7 L002% L0064 0080
0215 40 L0026 . 00468 .0083
.0218 41 .0029 .0071 .0086
L0221 2 L0832 L0075 .80%0
L0224 43 . 5035 ,0079 L0094
.0227 4h .0038 .0083 0099
. 0230 45 . o042 0087 sy L
. 02335 L Y- .D0us .oo92 L0110
L0240 u7 0051 0099 L0117
0244 [3:] L0057 0106 0126
025 49 L0084 011y 0135
L0261 50 0071 L0122 Joluy
L0249 St L0077 L0129 0153
.0278 52 . 8085 L0137 0162
. 0289 53 L0093 01us 0172
0302 S L0103 L0156 L0184
L0316 S .0112 0166 L0196
L0332 56 L0123 L0176 .0207
0347 B4 0134 . 0187 .0220
03466 S8 0146 .0200 L0234
. 0384 59 L0160 L0214 . 0250
.0u02 &0 0176 L0229 . 0248
L0u22 [-33 0193 0244 . 0287
0uy3 &2 .0212 L0264 .0308

L Y] 63 .0232 . 0282 L0329

125



1930 1980

Disabled Mortality Disabled Mortality
U.S. Life Table Raw Data Committee Fit(REG) Fit(MAX) U.S8. Life
Tahle

AGE tQx tQx* tQx " tQx" " tQx' ' AGE tax tQx" tex"*
&1 L0357 L0270 .0u00 .0u2S L0475 -3 . 0252 L0301 . 0350
65 .0384 Louy2 L0412 L0452 . 0525 65 D27 . 0320 L0372
-1 0420 L0411 .ou28 .ougl 0559 66 0297 .0340 L0395
&7 L 0uSs 0547 . o0u51 .0512 L0595 &7 .0322 10362 L0u20
48 LS4 0330 . o481 L0544 <0630 &8 03Uy . 0386 .0hy8
&9 L0536 029 L0519 . 0581 R-yA) &9 0380 LONn12 0478
70 . 0580 0173 L0566 L0617 L0715 70 L0413 oun2 L0512
71 0625 L0618 L0621 L0655 L0758 71 L0452 L0473 .05u8
72 L0674 L1068 . 0482 L0694 .0803 72 L 04?0 L0505 0584
73 L0727 L8630 L0730 L0737 . 0852 73 L0529 L0537 L0621
™ .0786 L0743 . 0822 L0783 L0907 T L0357 L0569 . 0658
75 .0853 L1190 . 0898 .0838 . 0948 5 L0615 L060U . 0498
Té 0927 L0824 L0976 . 0897 .1037 76 L0664 L0y L0742
kA .1010 .16%8 .1054 0965 L1113 77 L0718 0686 L0791
78 .1101 1319 L1137 L1037 231195 78 0776 0731 .0842
79 21199 L0759 L1220 Jd1iu .1282 79 .083¢% .0780 .08%8
80 .1300 . 0588 .1305 L1192 L1371 30 L0710 L0334 L0940
81 L1404 .19u8 L1393 L1271 L1u61 81 . 0989 . 0895 .1029
82 L1512 173y .1u485 L1361 L1583 a2 L1073 L0988 1102
83 1421 1105 . 1581 L1459 EE-I B3 1161 1045 1177
8y 1733 0613 L1481 1560 (1735 ay .1252 .2 L1254
8% .1847 .22%90 .1787 L1662 1826 85 L1351 L1216 L1334
asé 1962 L1149 .1897 L1766 L1917 84 L1159 L1313 L1424
87 .2078 .2019 L1870 L2007 87 L1589 L1412 .1515
a8 L2197 L2146 1977 L2097 83 1677 L1510 L1601
89 L2321 ,2283 .2089 L2191 a9 .1787 L1609 .1687
90 25 L2429 \ 2209 L2272 2?9 L1904 L1715 L1779
21 L2602 . 2587 L2342 L2403 ?1 L2037 .1B3S5 ,1083
92 2763 L2797 .37 .32352% P2 L2184 L1943 . 1998
?3 L2940 .29u1 L26%46 L2460 ?3 L2345 L2111 L2122
Sl 3133 L3140 . 2820 . 20290 u 25046 . 2255 L2255
25 L334k L3356 .3010 .3010 29 L2662 , 2396 .2396
6 35T .358% L3217 .37 ?6 ,2800 .2520 .2520
97 .3824 . 3Bu1 L3442 L3un2 97 L2931 .2638 2638
98 4099 L4113 L3686 L3685 ?8 L3035 L2749 L2749
?9 L4388 L4406 L3749 L399 9?9 L3170 .2853 .2853
100 4704 4720 L4233 L4233 100 .3278 L2951 L2751
101 .50ny L5057 M539 4537 101 L3379 L3041 L3041
102 JSh09 L9417 48648 4868 102 L3472 L3125 3125
183 .5800 5799 .3220 L9220 103 3559 L3203 3203
104 16219 L6204 L5577 L5597 104 L3438 L3275 L3275
109 L6644 6666 L5999 L5779 105 L3712 , 3341 L3341
106 106 L3777 .3h01 3401
107 107 L3841 L3uS7 L3457
108 1u8 L3897 L3507 3507

109 169 L3949 L3554 355

126



Graph 1

Disabled Worker Mortality

Age vs. Ratio of qd/qu
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Graph 2

Disabled Worker Mortality

16

Age vs. Ratio of qd/qu
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Graph 3

Disabled Worker Mortality

Age vs. Ratio of gd/qu
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Appendix 1 Regression formulas

Regression with additive error structure

This is the standard least squares regression method.

Model is Y e=8(Xisee Xyt + €
where: v, is the dependent variable
X;...X;, are the independent variables
g is the function with parameters to be estimated

€ is ~ NO,0)

The additive error structure is appropriate when it can be assumed that the
conditional variance = var{y, | g(X¢...Xxe)} = constant = o® In other words the
variance o° is independent of t. This is an assumption of least square regression

referred to as homoscedasticity.

Assuming a normal distribution of the disturbance term ¢,

the maximum likelihood estimates for the parameters of g minimize:
§ E% = E [)’t — g(xn...x;ct)]z
t t

The regression function used is: g(x,,) = be’®

where x,, = t = age

e/t + €,

Our model becomes : ¥y = be
where y,. is the observed ratio of injured worker

mortality to standard mortality at age t.

The regression finds b and ¢ which minimize: E ‘_yt — hec/t]2
t
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Appendix 1 Regression Formulas

Regression with muitiplicative error structure.

Model is D Ve= B(XipeeeXxe)(1+ €0 = g(Xype.Xip) + €p B{XyeeXpe)
where ¢, is ~ N{(0,07)

Thus the disturbance term increases in size with the function.

This multiplicative error structure is appropriate when
it can be assumed that the var{ y, | g(X,¢eeXpe)l= R(X\¢ee-Xp1)?0°
i.e, the variance increases with the square of the

function (the conditional mean).

Yo - 80K Xag) - Y3 -1
(% ¢ Xy t) alX) 10 Xay)

Also, €, =

This ¢, satisfies the assumptions of standard least squares
regression, that is : €~ N(0,0%), so the maximum

likelihood estimates of the parameters of g minimize:

vy 2
Zl g(x : X ) 1|
1okt

An alternative mode| (which we did not use) is 1 vy, =g(X)s...Xpe) + €4 B(X ¢r-Xpce)
v 74
Which requires minimization of H E ———‘——-——— - ,] 16 JPPAL'N)
t ngxn...xm)

varf ¥e | @K peeXnelb= @(X1geeXnedo?
Here the variance increases linearly with the conditional mean.
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Appendix 1 Regression formulas

Both of these error structures are examples of heteroscedasticity, a common

violation of the assumptions of least squares regression.

A multiplicative model was used and eventually chosen as the model that best "fit"

our data .
The regression function used is: g(%Xye) = be®’®
where x,, = t = age
Our model becomes : Ve = be®"(1 + €)
For this model , the regression minimizes: _;. * -1
0 bec/c

This is equivalent to minimizing the sum of the squares of the proportional errors.
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Appendix 2 Significance of Parameters

Regression can be regarded as fitting a distribution (often a normal distribution) to

the error terms ¢; by the method of maximum likelihood.

Variances and covariances of the regression parameters can thus be estimated by

the inverse of the information matrix as described in

Robert V. Hogg - Stuart A. Klugman (Page 81).

LOSS DISTRIBUTIONS by

If f(e;0) is the density function for the error terms, and @ is a vector listing the

parameters to be estimated, the ijth element of the

2, ,(0) = —nE[

This is typically estimated by:

31n fle,;0)
=~ —Z 58,36,

[--1]

Wher is the vector of parame

information metrix is:

€. == observed deviation from the model for observation t.

Thus the information matrix is estimated by the second partials

of the negative loglikelihood.

For our model: y, = be™ + ¢,

so that € =Y — be®’*

Thus in fle@) = ~Linox
r £{eu® 5in2=

8 = <be,o*>

and

f(e.;0) =

Since ¢; ~ N(0,0%)

133

82 .
a___la“o ;(;,6) , Here n is the number of
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Appendix 2 Significance of Parameters

Taking the partial derivatives of Inf(e:;0) with respect to b,c and o? (after some algebra)

yields the following estimates of the ay; 2

a3 = 83 = -1: E eC/t[Ye - be"/'] = —1—42 &'t €
t

1w = e = 550 €L e = BT e

For the data used the sum is from t=24 to t=86.
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Appendix 2 Significance of Parameters
For our example the maximum likelihood estimates of the parameters are:

=32, -8 endo?=234 yielding the

Information Matrix:

2664.4519  28.7613 9412
28.7613 3271 0104
9412 0104 5.0397

Taking the matrix inverse gives us the Variance-Covariance Matrix:

[ 0074 -.6493 o 1
-6493  60.1556  -.0028
0 -.0028 1984

Our final step is to check the significance of our parameters. We do

ng the ratio of the estimated parameier values to their

S W TN,
{115 Dy OO0SsServi

b
standard deviations.

Standard error of parameter b : ~I 0074 = .086 .32/.086 = 3.72
Standard error of parameter c: 460.16 = 7.76 84/7.76 = 10.83

Parameters b and ¢ appear to be significant,

j—
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Appendix 2 Significance of Parameters

Multiplicative error structure

8 =<b,c,0%>

e,= observed deviation from the model for observation t

€2/742
Again: fle:®) — e /20 and
oy2x
In f{e,;0) = “lin2r —no — i
2 202
- -1 - o — [ L i - [
2ln27r Ino [be‘:/' 1]‘202 ,since €, [be‘/" 1]

Taking the partial derivatives of In f{(¢,;6) with respect to b,c and o yields the

following estimetes of the a,, :

a,, - D (e+1X3e+1)
t

812 == 83 = 6';—2 =; %(£t+1)(252+1)
t

U‘Z(€‘+1)€‘

-

Ay3 =83 =

o8

82 - “71_22:‘-12(%*1)(2%*1)

t
Qg3 == 837 ='j';§ %
o -+ L3
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Appendix 2 Significance of Parameters

For our example: b=.35, ¢ =88 and c;z = .15 yielding the

Information Matrix:

2953.559  20.9672

17.3812
20.9674 .1709 1104
17.3812 .1104 1348.404

Taking the inverse of this matrix gives us the Variance-Covariance Matrix:

0026 -.32138 0
-.3218 45.3341 .0004
0 0on4 .0007
Standard error of perameter b : 4 0026 = .051

.35/.051 = 6.86
Standard error of parameter c: «]45.33 = 6.73 88/6.73 = 13.08

Parameters appear to be significant.
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