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Abstract 
It is shown that the (over-dispersed) Poisson model is not the same as the distribution-free 
chain ladder model of Mack (1993) although it yields the same estimator for the claims 
reserve. Moreover, the distribution-free chain ladder model has more in common with the 
historical chain ladder algorithm, and so it better qualifies to be referred to as the model 
underlying the chain ladder algorithm. 
Overview of the two models 
Let Dij denote the cumulative losses for accident year i=1,...,n and for age j=1,...,n. The loss 
amounts Dij have been observed for j £ n+1-i whereas the other amounts, especially the 
ultimate amounts Din, i>1, have to be predicted. The chain ladder algorithm consists of the 
stepwise prediction rule 

 D^ij = D^i,j-1f^j   with   f^j = (Si Dij) / (Si Di,j-1)  
starting with the most recent cumulative claims amount D^i,n+1-i = Di,n+1-i of accident year i. 
This yields  
 D^in = Di,n+1-if^n+2-i•...•f^n 
as estimator for the ultimate claims amount.  
The chain ladder algorithm was developed as a deterministic algorithm and did not have any 
stochastic model underlying it. But in order to assess its prediction error, an underlying 
stochastic model is required. In the last two decades, several models were associated with the 
chain ladder algorithm, but most of them lead to estimators for Din which are different from 
the above D^in, see e.g. Mack (1994) or England/Verrall (1998). In this paper, the only two 
models which lead to the same estimators for Din as the chain ladder algorithm are compared. 
Consider first the distribution-free stochastic model ("DFCL") of Mack (1993). Its main 
assumption is 
(DFCL1) E(Dij | Di1, Di2, ..., Di,j-1) = Di,j-1fj 
with unknown parameters f2,...,fn. From DFCL1 it can be deduced that  
  E(Din | Di1,....,Di,n+1-i) = Di,n+1-ifn+2-i•...•fn 
which immediately gives the chain ladder algorithm if the unknown parameters fj are 
estimated by f^j. It is important to realize that in claims reserving the relevant quantity to be 
estimated is the conditional mean of Din given the data observed so far because these data are 
a part of the quantity Din of interest. In Mack (1993) it is shown that f^j is the minimum 
variance unbiased linear estimator of fj if one makes the following additional assumptions: 

(DFCL2) Var(Dij | Di1,...,Di,j-1) = Di,j-1s²j       with unknown parameters s²j . 

(DFCL3) The accident years (Di1,..., Din), 1 £ i £ n, are independent. 
If DFCL2 is violated, some other variant of the chain ladder algorithm might still be optimal, 
as will be discussed further below. Failure of DFCL3 usually requires a different approach. 



Already in 1975, Hachemeister and Stanard discovered another stochastic model leading to 
the chain ladder algorithm. This model works on the incremental amounts 
 Ci1 = Di1     and       Cij = Dij - Di,j-1 ,  j > 1,  
and makes the assumptions 
(P1) E(Cij) = xiyj  with unknown parameters xi and yj . 
(P2) Each Cij has a Poisson distribution. 
(P3) All Cij are independent. 
Then the ML estimator R^i of the claims reserve  
 Ri = Ci,n+2-i + .... + Cin  =  Din - Di,n+1-i 
turns out to give the same prediction D^in = Di,n+1-i + R^i as the chain ladder algorithm. Due to 
the independence assumption P3, Di,n+1-i + R^i is an estimator of the conditional expectation 
E(Din | Di1,....,Di,n+1-i). Assumption P2 implies that all incremental amounts Cij have to be non-
negative integers. 
This Poisson model can be cast into the form of a Generalized Linear Model (GLM) with 
logarithmic link function via (cf. Renshaw/Verrall (1994)) 

(P1*)  ln(E(Cij)) = ai + ßj. 

In this form, the parameters ai = ln(xi), ßj = ln(yj) can be estimated using standard statistical 
GLM software. Of course, this yields the same estimators for xi, yj, Ri and Din because the 
estimation procedure of GLMs is maximum likelihood, too. A further benefit of the use of 
GLMs is the fact that these show a way how to overcome the constraint that Cij have to be 
non-negative integers. For this purpose, we recall that the only distributional assumptions 
used in GLMs are the functional relationship between variance and mean and the fact that the 
distribution belongs to the exponential family. This relationship is Var(Cij) = E(Cij) in the 
Poisson case. It can be generalized to Var(Cij) = fE(Cij) without any change in form and 
solution of the likelihood equations. This allows for more dispersion in the data and one does 
not care any more about the range of the underlying distribution; one speaks of an over-
dispersed Poisson model and of quasi-likelihood equations. For the solution of the quasi-
likelihood equations it is not necessary that the Cij's are non-negative or integers. At least, the 
fitted values are always positive. However, the algorithm for the solution of the quasi-
likelihood equations breaks down unless the sum of the observed incremental amounts in 
every row and every column is non-negative as can easily be seen from the quasi-likelihood 
equations 

 Sj exp(ai + ßj)  =  Sj Cij ,       1 £ i £ n, 

 Si exp(ai + ßj)  =  Si Cij ,       1 £ j £ n. 
But these problems can be overcome if we work without the log-link and without GLM 
software. Then the over-dispersed Poisson model ("ODP") is: 
(ODP1) E(Cij)) = xiyj      with unknown parameters xi, yj. 

(ODP2) Var(Cij) = fE(Cij)      with an unknown parameter f. 
(ODP3) All Cij are independent. 
The resulting quasi-likelihood equations are 

 Sj xiyj  =  Sj Cij ,       1 £ i £ n, 

 Si xiyj  =  Si Cij ,       1 £ j £ n. 



As has been shown in appendix A of Mack (1991) (see also Schmidt/Wünsche (1998)), these 
equations have the unique solution (if all f^j are well-defined and ¹ 0) 
 x^iy^j = Di,n+1-if^n+2-i•...•f^j-1•(f^j-1)      for  j > n+1-i, 

 x^iy^j = Di,n+1-i( (f^j+1•...•f^n+1-i)-1 - (f^j•...•f^n+1-i)-1 )     for  j £ n+1-i, 
with f^j from the chain ladder algorithm. Because (f^j-1) + f^j•(f^j+1 - 1) = f^j•f^j+1 - 1 we 
immediately obtain 
 R^i = x^iy^n+2-i + ... + x^iy^n = Di,n+1-i(f^n+2-i•...•f^n - 1). 
This shows that the solution of the quasi-likelihood equations of the ODP model gives the 
same estimator for Din as the chain ladder algorithm and as the DFCL model. We will find 
some restrictions later. 
 
Evidence that the models are different 
In view of the fact that both models, DFCL1-3 and ODP1-3, yield the same estimators R^i 
and D^in as the deterministic chain ladder algorithm, the questions arise whether one model is 
a special case of the other and whether both models can be called “underlying the chain 
ladder algorithm”. First, we give five arguments, each of which shows that the models are 
different. 
a) ODP has more parameters than DFCL: 
In ODP1, one of the parameters is redundant because replacing xi with xi/c and yj with yj•c 
yields the same model. Therefore ODP has 2n-1 parameters whereas DFCL has only n-1 
parameters f2,...., fn. If we make the parametrisation of ODP1 unique by requiring that y1 = 1, 
then we have a one-to-one relationship between the set of the y^js and the set of the f^js: 
 f^j = (y^1 + ...+ y^j) / (y^1 + ... + y^j-1) 
 y^j = f^2•...•f^j-1•(f^j - 1),    j > 1. 
In this case (y1 = 1) we have xi = E(Ci1) = E(Di1) which shows that ODP uses parameters 
which are not used by the chain ladder algorithm. In the DFCL model, Di,n+1-i cannot be 
considered a parameter because it is known with certainty and does not lead to any estimation 
error. Moreover, Di,n+1-i does not play a specific role in the model assumptions: If one would 
consider it a parameter, this was to be done for all Dij known, too. The additional parameters 
xi of ODP make it possible that within ODP the unconditioned means E(Dij) can be estimated, 
too. This is not possible within the DFCL model. 
b) ODP has stronger independence assumptions: 
ODP3 requires all cells Cij to be independent whereas DFCL3 only requires that all rows are 
independent. The latter can often be assumed to hold in practise, whereas the independence of 
Cij and Ci,j+1 is sometimes violated. Even the uncorrelatedness of Cij and Ci,j+1 cannot be 
deduced from DFCL1-3. 
c) The fitted values C^ij or D^ij and therefore also the residuals rij = C^ij - Cij for ODP are 
different from those of DFCL: 

The fitted value D^ij for j £ n+1-i for the DFCL model clearly is 
 D^ij = Di,j-1f^j    or     C^ij = Di,j-1(f^j - 1). 
Note that there are no fitted values for the first column Di1 = Ci1.  
The fitted value D^ij for j £ n+1-i for the ODP model is  



 C^ij = x^iy^j = Di,n+1-i( (f^j+1•...•f^n+1-i)-1 - (f^j•...•f^n+1-i)-1 ) , 
which yields 
 D^ij = Di,n+1-i / (f^j+1•...•f^n+1-i) 
which is different from DFCL, because e.g. for j=n+1-i we obtain Di,n-i•f^n+1-i as fitted value 
for DFCL and Di,n+1-i as fitted value for ODP which are different for i > 1 because f^n+1-i 
depends not only on Di,n+1-i/Di,n-i of accident year i but also on the corresponding ratios of all 
older accident years, too. 
d) The simulated future emergence is different: 
To simulate the future values of Cij for ODP, all their expected values could be calculated, 
and then random draws added. For DFCL, on the other hand, the first new diagonal could be 
simulated this way, but for the second new diagonal the simulated cumulative value for the 
first diagonal would have to be multiplied by the development factor to get the mean value 
for the second diagonal. This mean thus includes the random component simulated for the 
first diagonal, which is not the case for the ODP simulation. 
e) The true expected reserves E(Ri | data) are different: 
If we would know the true parameters f2, ..., fn and xi, yj, respectively and if it was possible to 
draw several sets of observations (run-off triangles {Dij, i+j £ n+1}) from the same 
"population", then the reserve estimator R^i = Di,n+1-i(fn+2-i•...•fn - 1) of the chain ladder 
algorithm as well as of the DFCL model would change from one random draw to the next as 
Di,n+1-i changes, but the reserve estimator xiyn+2-i + ...+ xiyn of the ODP model would not. 
Conclusion:  
Whereas after a) and b) ODP could still seem to be a refinement of DFCL, c), d) and e) show 
that the models are definitively different. As a consequence, especially from d), the prediction 
errors of the models are different, too. For the formulae of the prediction errors see Mack 
(1993) for the DFCL model and England/Verrall (1998) for the ODP model. 
In each of these areas of difference, the DFCL agrees with the chain ladder algorithm to the 
extent that the algorithm has a clear implication. For instance, the chain ladder algorithm does 
not compute any parameters other than the development factors, and if you wanted to 
measure goodness-of-fit for the chain ladder algorithm, you would calculate the fitted values 
as the development factors times the previous cumulative losses. The ODP differs from the 
chain ladder in these aspects. 
As a consequence, the prediction errors calculated with the bootstrap approach of England 
and Verrall (1998) differ from the prediction errors for the chain ladder algorithm. A 
bootstrap approach to the chain ladder predicton errors would consist of resampling the 
individual development factors Fij = Dij/Di,j-1 within each column j. 
 
Other differences between the ODP model and the CL algorithm 
The chain ladder algorithm leads to closely related alternatives when the data is not exactly as 
required, and these alternatives can be readily accomodated by the DFCL model with 
appropriate adjustments to the assumptions. This is not the case with the ODP in the 
following two examples. 
1) ODP does not work in all situations where the CL algorithm works: 
In practise, it often happens that the figures of the oldest calendar years are not available. This 
means that the run-off triangle {Dij | i+j £ n+1} changes its shape to a trapezoid {Dij | m £ i+j 
£ n+1} with m £ n. Then the ODP model does not yield estimators R^i identical to the DFCL 



model and chain ladder algorithm. This is most easily seen for the following trapezoid 
(missing D11): 
  D12 D13 with incremental amounts    C13 
 D21 D22       C21 C22 
 D31        C31 
where C12 cannot be known because otherwise one would also know D11 = D12 - C12. In this 
situation the ODP model clearly cannot be applied (4 observations for 5 parameters) but both, 
chain ladder algorithm and DFCL model, can (with f^2 = D22/D21, f^3 = D13/D12) and yield 
identical results. Here, the disadvantage of the additional parameters xi of the ODP is clearly 
exhibited.  
More generally, if one or several claims amounts somewhere in the run-off triangle are not 
known or omitted as being not credible (e.g. a typing error or a large individual claim whose 
amount is not known), then the ODP yields different estimations for Din from chain ladder 
algorithm (and from DFCL). The reason is the fact that the proof for the identy  
 x^i•y^j = Di,n+1-i•f^n+2-i•...•f^j-1•(f^j-1)      for  j > n+1-i, 
only works for a full triangle without any missing values. 
2) ODP can not be adapted if the weights in f^j are changed: 
In practise, the estimator for fj is often calculated in a different way from f^j, e.g. 

 'f^j =  ( Si Dij/Di,j-1)/(n+1-j)  (straight average) 
or 
 "f^j =  (Si Di,j-1•Dij) / (Si Di,j-1

2) (regression method as in Kremer 1984). 
These estimators lead to different estimators for Ri and Din from those based on f^j. It is 
obvious, that the DFCL model can easily be adapted to these estimators via 

(DFCL2')  Var(Dij | Di1,...,Di,j-1) = Di,j-1
2 s²j 

or 
(DFCL2")  Var(Dij | Di1,...,Di,j-1) = s²j . 
But if one tries to adapt ODP3 to 

(ODP3') Var(Cij) = f(E(Cij))²  (Gamma-GLM, cf. Mack (1991)) 
or 
(ODP3") Var(Cij) = f   (least squares method of DeVylder 1978), 
one obtaines estimators for Ri and Din which are again different from those of the CL 
algorithm with 'f^j or "f^j, respectively. There are no other variance assumptions known under 
which ODP could be adapted to give the same preditions as the chain ladder algorithm with 
'f^j or "f^j. 
 
Conclusion 
The DFCL and ODP models are different and they yield the same predictions only in a 
special but common situation. But even then, their prediction errors are different. Because the 
DFCL model agrees with the chain ladder algorithm in every identified area, whereas the 
ODP does not, just the DFCL model can reasonably be called "underlying the chain ladder 
algorithm." 
 
References 



DeVylder (1978), Estimation of IBNR Claims by Least Squares, Mitteilungen der SVVM 78, 
249-254. 
England and Verrall (1998), Standard Errrors of Prediction in Claims Reserving: A 
Comparison of Methods, Proceedings of the General Insurance Convention & ASTIN 
Colloquium in Glasgow, Volume 1, 459-478 
Hachemeister and Stanard (1975), IBNR Claims Count Estimation with Static Lag Functions, 
Spring Meeting of the Casualty Actuarial Society . 
Kremer (1984), A Class of Autoregressive Models for Predicting the Final Claims Amount, 
IME 3, 111-119. 
Mack (1991), A Simple Parametric Model for Rating Automobile Insurance or Estimating 
IBNR Claims Reserves, ASTIN Bulletin 21, 93-109. 
Mack (1993), Distribution-free Calculation of the Standard Error of Chain Ladder Reserve 
Estimates, ASTIN Bulletin 23, 213-225. 
Mack (1994), Which Stochastic Model is Underlying the Chain Ladder Method?, IME 15, 
133-138. 
Renshaw and Verrall (1994), A Stochastic Model Underlying the Chain Ladder Technique, 
Proceedings of the ASTIN Colloquium in Cannes. 
Schmidt and Wünsche (1998), Chain Ladder, Marginal Sum and Maximum Likelihood 
Estimation, Blätter der DGVM 23, 267-277. 


