
Simulating	Normal	and	t	Copulas	
There are standard routines for simulating the multivariate normal and t distributions 

starting with the correlation matrix. To simulate the corresponding copulas, you first simulate 
the multivariate distributions, then apply the normal or t distribution to get the probabilities. A 
simulated copula is a matrix of simulated probabilities that have been correlated according to 
the copula structure. Once you have those, you can take the inverse probabilities with any de-
sired distributions to get the final simulated values. 

The starting point is the Cholesky decomposition of the correlation matrix of a multivar-
iate standard normal distribution. It is a transform of the correlation matrix to a matrix with ze-
ros above the diagonal and gives the regressions (conditional distributions) of each standard 
normal variable on all the previous ones implied by the correlation matrix. That is, if you multi-
ply it on the right by a column vector of standard normal observations, it gives the mean of each 
variable conditional on all the previous observations. As a result, multiplying it on the right by 
column vector of independent standard normals gives a vector of correlated standard normals, 
with the target correlation matrix. Thus if you can simulate independent standard normals, and 
you have the Cholesky decomposition, you can produce correlated standard normals that have 
any desired correlation matrix. 

Later the calculation of the Cholesky decomposition is discussed, but there are a number 
of statistical routines that do this, so for now, how do you simulate the normal copula assuming 
you have the Cholesky decomposition? 

Random number generation and the inverse normal distribution are quite commonly 
available, so it is easy to generate independent standard normal deviates. In Excel, for instance, 
if you want k of these, do normsinv(rand()) k times. If L is the Cholesky decomposition of the 
correlation matrix and z is a column vector of k independent standard normal simulations, then 
x = Lz is the resulting vector of correlated standard normals. If you take the standard normal 
probabilities of these, as in normsdist(x), that gives a simulation of the normal copula. 

The t copula is not much more complicated. It takes as parameters a correlation matrix 
and a single number called degrees of freedom, denoted as n. For the t copula, start by simulat-
ing a correlated standard normal variable x from the t-copula correlation matrix. Then simulate 
y from a chi-squared distribution with n degrees of freedom. That is usually easy to do. For in-
stance in Excel you could simulate y by y = 2*gammainv(rand(), n/2, 1). Then w = x(n/y)½ is a 
correlated t-distributed vector. Finally, the t distribution with n degrees of freedom is applied to 
w to give the simulated copula. In Excel this can be implemented by the beta distribution , even 
if n is not an integer, by Tn(w) = ½ + ½ sign(w)betadist[w2/(n+w2), ½, n/2]. 

If a Cholesky routine is not readily available, you can use this recursive algorithm: 

For a starting matrix with elements Aij calculate the Cholesky decomposition using Lij 
with i > j for the lower triangle, and Di where the diagonal will be Di½ : 

D1 = A11 , L21 = A21 /D1 , and for i > j ≥ 1,  
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The sum is interpreted as zero if the upper index is less than the lower index. 


