
The state-space model in the Verall and Zehnwirth references provides a formal statistical 
treatment of the types of instability in a data triangle. This model can be used to help analyze 
whether to use all the data, or to adopt some form of weighted average that de-emphasizes older 
data. 

State-Space Model 
The application of state-space model differs from the alternative emergence methods in that it 
addresses instability in emergence patterns. As such it could be used in conjunction with any of 
those methods. It incorporates weights that emphasize the more recent data. Rather than 
discarding older data, it uses decreasing weights for older observations that gradually de-
emphasize them. The Zehnwirth and Verrall papers in the References discuss this model in some 
detail. 
 
The model assumes that observations fluctuate around a mean that itself changes over time. The 
degree of random fluctuation is measured by variance around the mean, and the movement of 
the mean by its variance over time. The interplay of these two variances determines the weights 
to apply, as in credibility theory. 
 
Thus the state-space model is a discipline for identifying a central factor at each point in time 
amid random fluctuations. This problem is analogous to finding the signal amid the noise in a 
static-filled broadcast. The general idea of this model is that there is a true factor at each point in 
time, but this changes over time. Moreover, the factor itself is never observed directly; only a 
random observation somewhere in the vicinity of the factor is observed. 
 
The state-space model thus provides underlying assumptions about the process by which 
development changes over time. With such a model, estimation techniques that minimize 
prediction errors can be developed for the changing development case. This can result in 
estimators that are better than either using all data, or taking the average of the last few 
diagonals. This is fairly detailed mathematically, and so is included in Appendix 1.  
 

Appendix 1– State Space Model 
The problem is to find a reasonable estimate for the factor at each point that recognizes changes 
in the factor but is not overly responsive to random fluctuations. How responsive turns out to be 
a function of two important variances: the variance of the movement of the factor over time, and 
the variance of the random fluctuation. A formal definition of the model follows in the case of 2nd 
to 3rd development. 
bi=2nd to 3rd factor for ith accident year 
yi=3rd report losses for ith accident year 
xi=2nd report losses for ith accident year 
yi=xibi+ei. The error term ei is assumed to have mean 0 and variance si2. 
bi=bi-1+di. The fluctuation di is assumed to have mean 0 and variance ni2, and  

to be independent of the e's. 
What needs to be estimated primarily are the factors bi. These will be applied when yi-1 and xi 
have been observed. The following notation will be used for the quantities to be estimated. 

    b
  ^

i= estimate of bi given y1, . . .,yi-1 and x1, . . .,xi-1. 

y
  ^

i= forecast of yi given y1, . . .,yi-1 and x1, . . .,xi. 

Gi= Variance of bi
 ^

  (G1 is a given parameter, later ones are estimated.) 

Hi= Variance of yi
 ^

   (Includes process variance si and parameter variance Gi.) 
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2nd to 3rd Smoothed with J= .07

The estimation in the state space model is an iterative process that proceeds one period at a time. 
The process is similar to credibility. From the signal processing background the estimation 
procedure is called the Kalman filter after its originator. The key is the so called Kalman gain factor, 
which in effect is a credibility weight to see how much the new observation should be allowed to 
change the previous estimate of the development factor. The iterative process at each stage has 
several steps as follows: 

 y
  ̂

i= xi  bi
^
       Next observation forecast 

ki= Gixi/(xi2Gi+si2)  Update Kalman gain (credibility) factor 
Gi+1= Gi+ni+1-kixiGi  Update parameter variance - it increases because of fluctuation, but 

decreases due to more data 

b
  ̂

i+1= b
  ̂

i+ki(yi-y
  ̂
i)  Update parameter estimate, using Kalman gain factor 

  Hi= xi2Gi+si2    Update forecast variance (and thus standard error) 
In order to begin this process, several starting parameters are needed that may have to be 

estimated. They are: G1, b
 ^

1, si, ni. Some 
simplifying assumptions can be made 
to ease this initial start-up. 

Simplified State-Space Model 
Assumptions that greatly simplify this 
model are that ni=n, and si=xis, for 
each period i. This leads to the result: 

                           b
  ^

i+1= b
  ^

i+zi(yi/xi-b
  ^

i), 
where 

  z1= G1/(G1+s2) and  
zi+1= 1/[1+1/(zi+J)], 

J=n2/s2 

This is the Gerber-Jones credibility model (e.g., see Credibility Formulas with Geometric Weights in 
the 1975 Society of Actuaries Transactions or the credibility chapter of the CAS textbook). In the 
limit the credibility is z¥=½J[(1+4/J)½-1]. In this formula the development factor for an accident 
year is the previous year’s factor plus a correction term, where the correction term is the 
credibility weight z times the prediction error from the last year. The formula can also be 
interpreted as an estimation of the development factor as a weighted average of the individual 
year development ratios, with the weights declining for more remote periods. To see this, let 
wi=ziyi/xi. Then successive substitution yields: 

    b
  ^

i+1=wi+(1-zi)wi-1+(1-zi)(1-zi-1)wi-2+..+b
  ^

1P(1-zj), 
which is a declining weighted average of the yj/xj's. This still needs starting values. Assuming no 

prior knowledge, you could start with z1=1 and b
 ^

1=y1/x1. Then just J would be needed to do 
updates. Rather than estimating its component variances separately, J could be estimated by 

trying different J’s to minimize the SSSSPE= Si[yi/xi-y
 ^

i/xi]2. SSSSPE stands for the sum of squares 
of single step prediction errors, which is a goodness-of-fit measure for varying parameter models. 
It quantifies how well the estimation actually performs in separating signal from noise. As an 
example, the fit with J=.07 is shown in Figure 5. That J yields a z¥ of 0.23. The fit appears to 
capture longer term changes without following random fluctuations too greatly. The values of zI 

and b
  ^

i+1that derive from the Gerber-Jones formula are shown in Exhibit 2. This starts with an 
initial z of unity, then updates with J=.07. 

Figure 5 



 
Now suppose, however, that there is a break in the data at the jth point. By setting nj large in the 
original Kalman updating formula, Gj also becomes large, which leads to kj = 1/xj. This mean that 

the next estimate will be b
  ^

j+1=yj/xj, that is the next observation gets full credibility. The updating 

starts over from there. How large do these values have to be? Just large enough so that k=1/x to 
the number of decimal points in the calculation. 
 
To illustrate this, Exhibit 2 also shows the updating calculation for the 2nd to 3rd factor above with 
a jump after the fifth point and another jump seven point from the end. These were chosen as 
points where there appears to be a change in level, not just a random fluctuation. For this 
example, n=0.003 except at the two points where it is large, si=s =0.3, xI=1, and k starts at 1. Here 
all the x’s are unity, as the parameter is the estimate. This procedure gives J=1/30 except at the 
two jump points, which is less than half what it was in the first example. In effect, the process is 
assumed to be smoother except at the jumps. The effect is shown in Figure 6. 
 
One way of comparing such models is the SSSSPE: sum of squares of single step prediction errors 

(yi-y
  ̂

i)2. This is 6.08 for the first smoothing and 5.42 with the jumps. This is a good measure of fit 
that does not require counting degrees of freedom. If too little smoothing is done, the fit may be 
better but the prediction errors could be worse, as the fit would be following random 
fluctuations. By taking other values of the parameters, more or less smoothing can be obtained. 
The SSSSPE can also be used to test other smoothing techniques, such as average the last 5 
diagonals. For this series that method gives an SSSSPE of 6.25. 

Figure 6 
2nd to 3rd Smoothed with Two Jumps
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Exhibit 2 – Simplified State-Space Example 
 J=.07 Two Jumps 

2nd to 3rd z beta Nu Gamma k Beta 
a b=1/[1+1/(.07+b-)] 

 
c=ab+c-(1-b) d e=d+e-(1-f-) f=e/(e+0.32) g=af+g-(1-f) 

1.81 1 1.81 0.003 0.003 1.000 1.81 
1.60 0.517 1.70 0.003 0.003 0.032 1.80 
1.41 0.370 1.59 0.003 0.006 0.062 1.78 
2.29 0.305 1.81 0.003 0.009 0.087 1.82 
2.25 0.273 1.93 0.003 0.011 0.107 1.87 
1.38 0.255 1.79 1000000 1000000 1.000 1.38 
1.36 0.246 1.68 0.003 0.093 0.508 1.37 
1.07 0.240 1.54 0.003 0.049 0.351 1.26 
1.60 0.237 1.55 0.003 0.035 0.278 1.36 
0.89 0.235 1.40 0.003 0.028 0.237 1.25 
1.42 0.233 1.40 0.003 0.024 0.213 1.28 
0.99 0.233 1.31 0.003 0.022 0.198 1.23 
1.01 0.232 1.24 0.003 0.021 0.188 1.19 
1.03 0.232 1.19 0.003 0.020 0.181 1.16 
1.02 0.232 1.15 0.003 0.019 0.176 1.13 
1.35 0.232 1.20 0.003 0.019 0.173 1.17 
1.21 0.232 1.20 0.003 0.019 0.171 1.18 
1.28 0.232 1.22 0.003 0.018 0.170 1.19 
1.51 0.232 1.29 0.003 0.018 0.169 1.25 
1.17 0.232 1.26 0.003 0.018 0.168 1.23 
2.00 0.232 1.43 0.003 0.018 0.168 1.36 
0.98 0.232 1.33 0.003 0.018 0.167 1.30 
1.21 0.232 1.30 0.003 0.018 0.167 1.28 
1.24 0.232 1.29 0.003 0.018 0.167 1.28 
1.79 0.232 1.40 0.003 0.018 0.167 1.36 
1.32 0.232 1.38 0.003 0.018 0.167 1.36 
1.48 0.232 1.41 0.003 0.018 0.167 1.38 
1.51 0.232 1.43 0.003 0.018 0.167 1.40 
1.01 0.232 1.33 0.003 0.018 0.167 1.33 
1.51 0.232 1.37 0.003 0.018 0.167 1.36 
1.06 0.232 1.30 0.003 0.018 0.167 1.31 
1.6 0.232 1.37 0.003 0.018 0.167 1.36 

1.10 0.232 1.31 0.003 0.018 0.167 1.32 
1.11 0.232 1.26 0.003 0.018 0.167 1.28 
2.20 0.232 1.48 1000000 1000000 1.000 2.20 
2.00 0.232 1.60 0.003 0.093 0.508 2.10 
1.50 0.232 1.58 0.003 0.049 0.351 1.89 
2.20 0.232 1.72 0.003 0.035 0.278 1.97 



1.19 0.232 1.60 0.003 0.028 0.237 1.79 
1.28 0.232 1.52 0.003 0.024 0.213 1.68 

1.52 0.232 1.52 0.003 0.022 0.198 1.65 



 


