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Abstract:

There have been continual advances in the modeling of financial series but most are aimed at the
pricing of derivatives. Different criteria are needed for development of scenarios for risk manage-
ment. Some recent methods will be reviewed with an eye on risk-management applications, includ-
ing using the simulated method of moments to parameterize multi-factor models, fractional diffe-
rencing and other methods to model series with persistent autocorrelation, and models to flatten out
the volatility smile, such as jump-diffusion models. These methods will be illustrated with applica-

tions to inflation, interest rates, equity prices and exchange rates.
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INTRODUCTION
Most academic literature on modeling financial series emphasizes the pricing of ever more com-

plex derivatives. However if the purpose of the modeling is to generate scenarios for risk manage-
ment, derivatives pricing is less important'. What is important is generating scenarios that are repre-
sentative of what could happen. This is not always easy to judge, but matching past properties of the

data is probably a good place to start.

One key property is persistence of shocks. If a jump in interest rates or inflation is quickly
damped out, the financial consequences for insurers are quite different than if it tends to persist as a
new pattern. For interest rates, having a variety of yield curves produced is necessary in order to

match history. Distributional aspects, like heaviness of tails, are also important.

Parameterization of models is also different in the risk-management arena. For derivatives pric-
ing, every parameter in a model can be used to calibrate to the current derivative prices. The model
then becomes in essence an elaborate interpolation/extrapolation scheme. For risk management, the
majority of parameters are intended to capture features of the process, and these would be fit to his-
torical data. Some parameters, however, represent constantly changing values, and these would be

calibrated to the latest data, such as option prices and yield curves.

For some models maximum likelihood estimation is not possible. If the features of historical data
to match are clear, a convenient though ad hoc method of parameterization is the simulated method
of moments. Basically a long series of data is simulated from the model with trial parameters, and
the simulated data is checked to see how well it reproduces the desired features of the data (called
“moments” even though the features being checked could be much more general than the usual
concept of moments of distributions). The parameters are then refined to produce the best match
possible. This is done by minimizing a selected function that includes weights for how important
each property is considered to be. Studies have found that simulated method of moments can ap-

proach the efficiency of maximum likelihood, depending on the moments chosen.

The organization of the paper is to first review concepts of time series and stochastic process
models, including fractional differencing, in section 1. Sections 2 and 3 discuss treasury interest rates

and inflation modeling, including estimation by simulated method of moments, and section 4 ad-

! The major exception in the insurance wotld is the management of the risks inherent in selling variable annuities,

which utilizes derivative-trading strategies.
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dresses ways to correlate these. Section 5 gets into modeling of equity prices, including jump diffu-
sions. Section 6 introduces some of the concepts of foreign exchange models. Section 7 brings in

models of bonds with default and liquidity risk. Section 8 concludes.

1. Time Series and Stochastic Process Concepts

1.1 Lag Operator

If X is a time series, say inflation observed monthly from March 1980 to December 2009, the
first lag of the series is the series of immediately previous observations, in this case Y, the inflation
rates from February 1980 to November 2009. The second lag of X is the first lag of Y, here Z, the
inflation rates from January 1980 to October 2009. Using L to denote the lag operator, we can write

Y = ILX and Z = LY. The lag operator basically works algebraically, so Z = L?X is the second lag.

The first difference of a series is the series minus its first lag, so for X this is X — Y, or (1 — L)X,
The second difference is the first difference of the first difference, or X -Y) - (Y -2) =X +Z —
2Y = X +L°X — 21X . This can be written as (1 — [)*X, continuing the algebraic treatment of L.

The first autocorrelation of a series is the correlation of X with X, the second autocorrelation is
the correlation of X with L?X, etc. If only a few autocorrelations are statistically non-zero, then any
shock in the process quickly washes out. However if the autocorrelation is high for many lags, the
effect of the shock persists. Thus looking at the autocorrelations as a function of lag can indicate if

shocks persist or fade away.

1.2 Models for Autocorrelation

A basic time series model is the AR(1), or first-order autoregressive process. This can be written:
fi = a+br +sg,

Here €,,, is a standard normal variate. The starting value is 1. If b is assumed to be less than 1 in
absolute value, the k™ autocorrelation of r is b". If say b = % the autocorrelations get small quickly,
and any shocks fade out. However if b is just below 1, the autocorrelations decline slowly and

shocks can persist for quite a while.

The expected value of r, can be shown to be r,b"+a(1 - b')/(1 — b) and so in the limitis a/(1 — b).
The variance of r, is s°(1 — b") /(1 — b) which approaches and is limited by s*/(1 — b).
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The simple random walk model is given by a=0, b=1. Here r is its initial value plus a series of
random noise draws. A shock from a long time ago has the same effect as a recent shock, so does
not fade out. In contrast, the effects of the random shocks in the AR(1) model decline by powers of
b. For the random walk with t observations to date, the k™ autocorrelation is (1 — k/t)”. It turns out
that this function is hard to distinguish from that of an AR(1) model with b just below 1, so it is dif-
ficult to tell a random walk from such an AR(1) process. There are tests for this, but they are not
particularly powerful, so there tends to be a fair amount of debate in the academic literature about

whether a particular series of interest is a random walk or an AR(1) with high b.

The expected value of 1, is just r,, but its variance is s’t, which grows without bound as time

passes. Thus the probability of r, being found in any particular fixed range goes to zero over time.

Often the first differences of a series can be modeled as an AR(1) process. For instance a process
with a trend would not have a finite mean or variance, but its differences might. Even a process like
a random walk with an infinite ultimate variance has well behaved first differences. If a process is

growing proportionally, first differences of the log might work.

1.3 Problems with Persistent Autocorrelation

Persistent autocorrelation does not always start near 1. Some series might have autocorrelation
around 2 at lag one but only slowly declining for later autocorrelations. This is a form of persistent
autocorrelation but it is more difficult to model. One possibility is that it is the sum of processes,
like an AR(1) with a low b plus either a random walk or an AR(1) with a high b. This gets into
somewhat problematical modeling issues, since none of those process are likely to be observed sepa-

rately.

For example, the US monthly CPI inflation rate seasonally adjusted from 1947 to August 2009
has the first 10 autocorrelations:

i 2 3 4 5 6 71 8 9 10
0.57 042 0.39 037 036 036 0.37 036 0.38 0.39

These do not drop consistently below 10% until about 7 years, or 84 lags. This does not fit the
pattern of either the AR(1) model or the random walk. A method for modeling processes like these
is partial differencing. It turns out to be possible to define (1 — 1), or the half-difference, in such a
way that if it is applied twice you get the first difference. More generally for any real d, Newton’s

generalization of the binomial theorem gives:
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1-1)'= Z(:(Lﬁzl—dud(dz!_l) Rt _13)!(d_2) ...

Thus fractional differences can be defined as declining sums and differences of previous lags. The
series of such differences has finite variance if |d|< "2, so an AR(1) model can apply. The autocor-
relation at lag k is approximately ck*™', where c is a constant that depends on d. This can be slowly
declining. For the US CPI inflation rate, d has been estimated as around 0.4 to 0.5 by various au-
thors, with similar results in other countries. Discussion of this methodology and some extensions

can be found in Baillie et al. 2002.

1.4 Multifactor Processes

Modeling inflation as a sum of simpler processes is discussed in the inflation section below. One
popular approach is the double mean-reverting process. An AR(1) process is mean-reverting. Con-
sider the change r,,,— 1, = a + (b — 1)r; plus a random mean zero term. If r, is at the long-term mean
a/(1 — b), the expected change is zero. Since b — 1 is negative, if 1, is above the long-term mean, the
expected change will be less than this, and so negative, pulling the series towards the long-term

mean. If 1, is below the mean, the pull will be upwards.

To make the mean reversion more explicit, sometimes this process is written as:

t,, =t + c(m—1) + sg,,, where ¢ = 1 — b and m is the mean a/(1 — b). Then the expected

change is readily seen as positive or negative depending on whether r; is below or above m.
The double mean-reverting process is to also let m be an AR(1) process, say
m,,; = m, + h(u—m) + on,,,, and now
f = 1+ c(m; — 1) + 58,

In this process, r reverts toward the temporary mean m, which itself reverts towards the long-
term mean Q. Also it is useful to consider the process q; = r; — m,. By subtracting the m from the r

equation,

Qi1 = 4 — g — h(t —my) + sg,,,— oMy

The last three terms are all independent normal mean zero variates, so their sum is also normal

mean zero. This shows that q is an AR(1) process with a = 0. Thus r = m + q is a sum of two AR(1)
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processes, one with mean zero. Hence a slight generalization of the double mean-reverting process

is just a sum of two AR(1) processes. This tends to be the more commonly used form recently.

Partial differencing has an advantage in simulating future scenarios in that it builds in the ob-
served past lags, whereas double processes have unobserved terms that somehow have to be cali-

brated to start the simulation.

1.5 Brownian Motion

Brownian motion is a continuous version of the random walk. It is a continuous process whose
change from one time to a time t periods later is normally distributed with mean zero and variance
ts”. Standard Brownian motion is usually denoted by B, W or Z and has s = 1. Over short periods it

tends to be a very jumpy process, as the standard deviation t” is a lot greater than t for small t.

The random walk r,,, = r; + sg,,; can be written Ar,,, = sg;,,. The corresponding form for Brow-
nian motion is dr, = sdW,.. A deterministic time trend can be added as in dr, = adt + sdW.. This can
be made mean reverting by making the sign of the trend depend on whether the process is below or
above the mean, e.g., dr, = a(m — r)dt + sdW,. If the log of a process follows a Brownian motion,

the process is said to be a geometric Brownian motion and is written d(log r,) = dr,/r, = sdW..
The other commonly used stochastic process is the compound Poisson process. Here the num-

ber of events in time t is Poisson in At, and each event size is an independent draw from a single dis-

tribution. If N(i) denotes the number of events with Poisson mean [ and X, is the k™ jump size,

then the process can be written adr = d (Zl{gt} X; )

Both Brownian motion and the compound Poisson process are simulated by taking short periods
to represent the instantaneous change dt. If t is measured in years, sometimes t = 1/252 is used to
represent one trading day. The Brownian motion standard deviation then becomes s/252" for this

period, so a mean zero normal draw with that standard deviation is used to represent dW..

2. Treasury Interest Rates

2.1 Basic Models

A popular way to model treasury (assumed risk-free) interest rates is through short-rate models.

These model the short-term rate of interest, usually the 3 month rate due to data availability, and
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then use arbitrage-free concepts to build up the yield curve from the short rate.

The two most common short-rate models are the Vasicek model and the Cox, Ingersoll, Ross, or

CIR model. The Vasicek model is a basic mean-reverting Brownian motion for the short-rate
dr, = (b —ar)dt + sdW..

The CIR model adds a twist to this: the standard deviation, or volatility, is proportional to the

square root of the interest rate:
dr, = (b —ar)dt + sr,”dW..

There are three attractions to the CIR model: empirical work has found that higher rates are in-
deed associated with higher volatility; it produces heavier-tailed distributions of rates, which are
more realistic; and making the random term zero when the short rate becomes zero makes it im-
possible to generate negative rates. However it comes with some costs: the distribution for a short
interval is approximately normal, but over a longer period it is not. This requires simulating on short

intervals and complicates the estimation of parameters, since the distribution is complicated.

2.2 Yield Curves

The popularity of these two models arises for another reason: the yield curves for both can be
calculated in closed form. The calculation of the yield curve in the arbitrage-free framework is oth-

erwise quite computationally intensive, so this is a significant advantage.

There are various ways to define arbitrage, but here it will be taken to mean a position built up
from a net investment of zero, which thus has no chance of a loss, but which has a positive proba-
bility of a profit. Since treasury bonds are assumed to be risk-free, and borrowing and lending them
is possible, inconsistencies in the yield curve can easily lead to arbitrage opportunities. While such
might exist for short periods in the real market, they do not tend to last very long, so should not be
in the yield curves used for financial planning. It is also worth noting that practices loosely referred
to as arbitrage are not really such, as they have risks not being focused on, like buyouts not going

through or liquidity problems arising.

The theory of arbitrage-free yield curves has produced a general calculation rule for bond prices,
from which the yield curve can be extracted. The rule is that the bond price has to be the expected
present value of the payments discounted back along all possible paths for the short-rate from now

to the time of maturity. However these discount rates are the modeled rates adjusted upward for the
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market price of risk. For the bond prices to be arbitrage-free, the adjustment has to be an increase in
the deterministic trend term in the model and has to be related in specific ways to the volatility of
the Brownian motion term. Also the same trend increase has to be used for all maturities. This high-
er trend tends to discount more, producing a lower bond price and so an upward-sloping yield
curve. There could be model situations where the resulting curve is not always entirely upward-
sloping, however, which sometimes happens in reality as well. The model with the added trend is
called the risk-neutral process, as the price is the mean under this process, and the mean would be

the price if the market were risk-neutral.

If the model is being simulated on a daily interval, you need many simulations that go out to 30
years in order to get that bond price, and if you want such yield curves for several points in time in
many simulations, the calculations required can become extensive. That is why having a closed-form

bond price is so useful. Even a somewhat messy formula for the bond price is worth tolerating.

There is a little flexibility in the trend adjustment. With market price of risk A, the formulas below

add a trend of Asrdt to the Vasicek and CIR models to get the risk-neutral short-rate process. Other
models leave out the r, factor. The bond price at time t for a bond maturing at time T with a pay-

ment of 1 and making no other payments, i.e., the price of a zero-coupon bond, is denoted as P(t,T).
In either model, let k = a — As and q = b/k. Then P(t,T) = A(t,T)/exp[B(t,T)t]. A and B differ in
the two models.

For the Vasicek model:

B(t,T) = [1 —e*¢tD]/k

2

s I[B(E,T) T +1] —:—kB(t, )2

log[A(t,T)] = [q ~ 252

In the CIR model:

leth = VkZ + 252 and €(t, T) = 2h + (k + h)(e"™ ) — 1). Then

et _ 1

B(E,T) :ZW
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2kq/s?

2he (K+R)(T-t)/2
(1) l

A(t,T) :[

2.3 Interest Rates

It is often convenient to express the bond price as a single interest rate. If the rate is viewed as
continuously compounding, then the payment of 1 at T can be expressed using the continuously
compounded interest rate R(t,T) by 1 = P(t,T)exp[R(t,T)(T — t)]. Alternatively an annually com-
pounded rate Y(t,T) would give 1 = P(tT)[1+Y(t,T)]" . Either rate can be expressed as a function
of P(t,T) by backing it out of these formulas.

The drawback of the closed-form yield-curve formulas is that the entire yield curve is determined
by the market price of risk and the short rate. This overly restricts the shapes of yield curves that can
occur. This is a problem in pricing options, but also for risk management. If some yield curves are
over-represented in the scenario set, and others are missing entirely, the risk of possible outcomes of

various positions would be misstated.

A way out of this problem is multifactor versions of the Vasicek and CIR models. It is possible to
make double mean reverting processes for either form, but typically these days the interest rate is
expressed as a sum of two partial interest rates, each following the same process but with different
parameters. Thus you can have a two factor Vasicek process with the short rate the sum of two par-
tial interest rates, each following a Vasicek process. The same is possible for the CIR process. For-
tunately it turns out that the bond prices and yield curves are still of closed form for the multifactor
models. In fact for the multifactor CIR model the bond price is the product of the bond prices from
the individual partial interest rates, and this makes the continuously compounded interest rates just
the sum of those from the partial interest rates. The Vasicek model is similar, but has an extra term

for the correlation of the partial rates.

2.4 Some Empirical Findings

The interest rates generated from the Vasicek model are normally distributed. However the t”
factor on volatility in the CIR model destroys normality. The CIR rates end up being distributed as
the sum of a series of gamma distributions. This makes MLE awkward at best. The normality of the
Vasicek model also makes the two-factor Vasicek model tractable even if the factors are correlated.

The two-factor CIR model requires independent factors in order to have closed-form yield curves.
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This ends up restricting the yield curve shapes.

Jagannathan et al. (2003) test CIR models with up to three factors. They show that MLE is possi-
ble using fast Fourier transforms to calculate the distribution function. They find that the three-
factor model does capture enough of a variety of yield curve shapes, while the two-factor model
does not, but that even the three-factor model is not sufficient for all options pricing, particularly for

options sensitive to stochastic volatility.

Andersen and Lund (1998) fit a more complex generalization of the CIR model to US treasury

rates. Their model can be expressed as:

dr, = (b, — ar)dt + st”dW,..

db, = (m — cb)dt + hb,*dW,.
dlog s’ = u(v —In s 2)dt + wdW,.

The first two factors are a form of double-mean reversion. The third is stochastic volatility. They
find that volatility does increase with interest rates, and the power p = 2 on the rate is not unrea-

sonable. But they also find that stochastic volatility is significant.

There is no simple formula for bond prices in their full model, so the grind-out simulation is the
only alternative. This makes their model impractical for market pricing, but is not so bad for risk
management. If you are going to update the model once a quarter, even taking a week to simulate it
on a PC is not prohibitive. Venter (2004) tested this model for generating yield curves and found
that it can produce a realistically wide variety of shapes, but that the market prices of risk need to be
stochastic to get a historically reasonable distribution of shapes. The market price of risk for a given
yield curve starting at time t has to be constant for all T, but it can change for different t and for dif-
ferent simulations. Andersen and Lund suggest that two market prices of risk are needed for this

model, for r and b, but not for s.

There is ongoing work on modeling stochastic volatility. One of the simpler of these is Balduzzi
et al. (1996) who reduce the yield curve calculation to the numerical solution of a system of two or-

dinary differential equations. Their model is:
dr, = (b, — ar)dt + s,°dW,..

db, = (m — cb)dt + hdW,,.

10
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ds, = u(v —s)dt + ws,"dW,..
dW, W, = p dt.

They start with a double-mean reverting Vasicek framework, but add a stochastic volatility which
follows a square-root process, to keep it positive, and correlate it with the interest rate, which tends
to make the volatility move with the interest rate as in CIR. In Andersen and Lund, the values of
both r and s affect the volatility, but here only s does. Also b can go negative. The advantage here is

in the simpler calculation of the yield curve.

It turns out that ignoring stochastic volatility is not a problem for some options prices, but is for
others. It might not be so bad to ignore it for most risk-management work. However some asset-
liability hedging strategies used in life insurance may need tweaks in periods of high volatility, and if
so this could be an issue. On the other hand, stochastic volatility increases the overall risk and prob-

ably affects the shape of the yield curve, so there is a case that it should be included.

2.5 An Example

A three-factor CIR model is fit to US 3-month treasury rates as an example. Data was taken from

the St. Louis Federal Reserve Fred database at http://research.stlouisfed.org/fred2/categories/116 .

The interest rate r = x+y+z is the sum of three partial interest rates each following a CIR model:
dx, = (b, — a,;x)dt + s,x,”"dW,..
dy, = (b, — a,y)dt + sy, "dW,..
dz, = (by — a;z)dt + s;2,°dW,..

There are nine parameters to estimate: 3 a’s, 3 b’s and 3 s’s. While MLE is possible it is complex,
so an ad hoc procedure involving simulated moments is used for illustration. First some properties
of the interest rates are identified that would be desirable for the model to mimic. Then starting pa-
rameters are selected and a long series simulated of x, y and z and so r. The series of t’s are then
tested to see how well they match the selected properties, and the parameters are iterated to produce
the best match overall. This requires a nonlinear optimizer better than that which comes in common
spreadsheets, but auxiliary packages like Poptools are available with such capabilities, or other soft-

ware than spreadsheets can be used.

Gallant and Tauchen (1996) show that this method can approach MLE in efficiency if the right

11
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properties are selected. Their approach, called efficient method of moments, involves fitting an aux-
iliary model and then tweaking the parameters so that the simulated series fits as closely as possible

to that model. However here a selected set of properties will be matched for illustration.

One thing selected to try to match is the autocorrelation structure. Here a question quickly arises
as to what period to use for the empirical rates. There was a change in the Federal Reserve manage-
ment of interest rates and monetary aggregates in the early 1980s, and some series show different
behavior if viewed from 1983 on. The interest rates are highly autocorrelated in all periods, but a bit
less so after 1983. Taking September 2009 as an ending point, comparing the short-rate from June
1949 to that starting in 1/1/1983 shows a somewhat different autocorrelation pattern. Both seties
start at lag 1 at 98.6% correlation but the 1983 series’ autocorrelations drop faster, then pick up
again later. At lag 70 the longer series has a 41% autocorrelation, vs. 35% for beginning in 1983. The

AR(1) value of 0.986" = 37% is a bit between these but too far from either.

In the end, the longer series was selected as the basis to match. One reason was that several fi-
nancial series recently have broken out of their 1983 — 2005 ranges. A series of 10,000 months was
simulated from selected starting parameters (a’s, b’s and s’s), and the sum of the absolute differences
between the simulated and empirical autocorrelations for the first 180 lags was taken as one moment

error to try to minimize by improving the parameters.

Other moments selected were the mean, standard deviation, CV (standard deviation/mean) and
skewness of the interest rates. Also moments of the monthly changes in the interest rate and the ab-
solute value of the monthly changes were selected. Finding parameters to match all of these would

make the simulated series reasonably similar in statistical properties to the data.

Absolute errors instead of squared errors were minimized in an attempt to keep any outliers from
having too much weight. Also the various moments were given different selected weights, reflecting
a judgment on their importance. Tables 1 and 2 show the moments attempted to be matched, the

weights given to each, the target and fitted values, and the fitted parameters:

Weight Moment Target  Fitted
1 Each of 180 autocorrelations see graph
1000 Mean interest rate 4.76% 4.76%
1000  Std dev interest rate 2.89% 1.90%
10 CV interest rate 60.7% 40.0%
10 Skw interest rate 1.05 2.55
10 Std dev monthly change 0.43% 0.34%
0.1 Skw monthly change -1.78 -0.25

12
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100,000 Mean abs. monthly change  0.2345% 0.2345%
10,000  Std dev abs. monthly change 0.36% 0.24%

1 CV abs. monthly change 1.54 1.04
1 Skw abs. monthly change 5.17 2.36
Table 1 — Moments to Match
a b s
0.49076 0.01301 0.00281
0.22609 0.00304 0.02854
0.01191 0.00008 0.00766

Table 2 — Fitted Parameters

The fits do appear to respond to the selected weights, which probably are not ideal. The match of
some moments was not great. The fitted and empirical autocorrelations are graphed in Figure 1. The
AR(1) coefficient corresponds roughly to 1 — a, so the third partial interest rate, with a = 1.2%, has
high autocorrelation. The reverting mean is b/a, so these are 2.65%, 1.34%, and 0.66%, respectively.

The second process is the most volatile, with the highest s.

Interest Rate Autocorrelations

o\
; N

\_—-""

-0.2

0] 50 100 150

Figure 1 — 180 Autocorrelations of Fitted and Empirical Monthly Short Rates

A simulation of future scenarios needs starting values of the three processes. These can be cali-
brated, along with the three market prices of risk, by trying to fit the latest observed yield curve us-
ing the bond-price formulas. One snag here is that most bonds are coupon-bearing, whereas the
formulas are for zero-coupon. Each coupon payment can be viewed as a zero-coupon bond itself,

and there are formulas for backing out a zero-coupon curve from the published bond prices. The

13
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data used here is taken from the zero-coupon curve published by the Wall Street Journal at

http://online.wsj.com/mdc/public/page/2 3020-tstrips.html. It is particularly difficult to get a

good fit at the time of this writing, as the short rate is 0.04%. The yield curves then basically come
from the market prices of risk only, as all the partial short rates are virtually zero. This gives three

parameters to fit to the curve instead of the usual six.

The best fit was found by setting the first rate to 0.04% with a market price of risk of 1.9, and all
the other rates and prices of risk to zero. The fitted and empirical yield curves are shown in Figure 2.

The fit is reasonable but not great. This turns out to be not atypical for short-rate models.

Yield Curve October 30, 2009
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4.5 ".’ ,p,.m: ﬁnvg . o o
4 et nf
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. ::“’;.r
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2.5
+ Data
2 5
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0.5 .'.i
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Figure 2 — Fitted and Empirical Yield Curves as of October 30, 2009

2.6 Improving the Fit of Yield Curves from Short-Rate Models

Any of the short-rate models discussed here can be made to fit exactly to the initial term struc-
ture, basically by making the b parameters deterministic time-dependent functions chosen to make
the fit exact. This process traces back at least to Hull and White (1990) and so is often referred to in

their names. The function needed can be computed directly from the bond prices P(t,T).

14
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First, define the forward rate f(t,T) as f (t,T) =— dlogP(t, T)/ ar: The bond price is the ex-

pected discounted price of the payout of 1 discounted along all possible paths of the future risk-

neutral rate. The forward rate is a representation of all the possible rates being discounted over at

-ir (ts)as

T
time T, so using it takes care of the expectation. In formulas, P(t,T) = Ee™ fersas — o
Let £(0,T) denote the forward rate curve for the market yields at time 0.

If we extend the basic Vasicek model, already adjusted for market price of risk, to:

dr, = (b(t) — kr)dt + sdW,,

it is possible to show that the market yields are reproduced by taking:

2
b(6) =00 4 kf(0,0) + = (1— &%) |

The bond price can still be written as P(t,T) = A(t,T)/exp[B(t,T)t,]. Now A and B are

B(t,T) = [1 —e*tD]/k

2

exp {B(t, T)f(0,t) — :_k (1 — e **)B(t, T)Z}

P(0,T)

A T) = P(0,t)

Brigo and Mercurio (2007) show similar formulas for CIR and multifactor models, and is an excel-

lent source for interest rate models in general.

If this is done, so the yield curve matches the current curve exactly, then the market prices of risk

and the partial interest rates would be calibrated to options prices.

Another way to improve the fit of multifactor short-rate models, introduced by Dai and Single-
ton (2000), is to add terms for interaction and correlations among the factors. They find a fairly gen-
eral framework where the yield curve can be calculated in closed form once two ordinary differential
equations are solved numerically. They call this an almost closed-form solution. This scheme allows,
for instance, positive correlation among the CIR factors to be included. They test a number of mod-
els empirically, and find that a generalization along the lines they introduce of the Balduzzi et al.
(1996) model is the best fitting in this class. This model allows positive and negative correlations

among the factors, which appears to provide more realistic fits to empirical data.
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2.7 Summary of Interest Rates

The study of interest-rate models is much more extensive, but the basic models with closed-form
yield curves have been covered. As these do not appear to be capable of handling stochastic volatili-
ty, the trade-off of ignoring that vs. analytical tractability has to be considered. Probably some effort
to incorporate at least the simpler models with stochastic volatility would be worthwhile for insurer

risk management.

Another issue often ignored is that the market price of risk, which has to be constant for every T
at time t, probably changes over t. Studying this for a given model would involve calibrating y